Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Preprocessing
2.1.1. Ground-Measured PM2.5
2.1.2. Satellite-Derived AOD from MODIS
2.1.3. CALIOP Data
2.1.4. Meteorological Data
2.1.5. Data Preprocessing and Integration
2.2. Methodology
2.2.1. Vertical Correction via PBLH
2.2.2. Vertical Correction via Near-Surface Ratio by CALIOP
2.2.3. Correlation via Pearson Coefficient
2.2.4. Linear Mixed Effect Model (LME) and Cross Validation (CV)
3. Results
3.1. The Spatial Distributions of PM2.5 and AOD over China from 2014 to 2015
3.2. The Relationship between PM2.5 and AOD throughout China
4. Discussion
4.1. The Recommended Vertical Correction Schemes
4.2. Model Performance and Validation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Takemura, T.; Nozawa, T.; Emori, S.; Nakajima, T.Y.; Nakajima, T. Simulation of climate response to aerosol direct and indirects with aerosol transport-radiation model. J. Geophys. Res. Atmos. 2005, 110, 169–190. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Zhao, C.; Zhang, M. Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games. Atmos. Chem. Phys. 2011, 11, 16655–16691. [Google Scholar] [CrossRef]
- Sloane, C.S.; Watson, J.; Chow, J.; Pritchett, L.; Richards, L.W. Size-segregated fine particle measurements by chemical species and their impact on visibility impairment in Denver. Atmos. Environ. 1991, 25A, 1013–1024. [Google Scholar] [CrossRef]
- Thurston, G.D.; Jiyoung, A.; Cromar, K.R.; Shao, Y.; Reynolds, H.R.; Michael, J.; Lim, C.C.; Ryan, S.; Yikyung, P.; Hayes, R.B. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP diet and health cohort. Environ. Health Perspect. 2015, 124, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Chen, L.; Chen, X.; Sun, G.; Zhong, N.; Kan, H.; Lu, W. Impact of haze and air pollution-related hazards on hospital admissions in Guangzhou, China. Environ. Sci. Pollut. Res. 2014, 21, 4236–4244. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Salmon, L.G.; Schauer, J.J.; Zeng, L.; Kiang, C.S.; Zhang, Y.; Cass, G.R. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmos. Environ. 2005, 39, 3967–3976. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Wild, O.; Xu, W.; Chen, C.; Fu, P.; Wei, D.; Zhou, L.; Zhang, Q.; Han, T. “Apec Blue”: Secondary aerosol reductions from emission controls in Beijing. Sci. Rep. 2016, 6, 20668. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, Y.; Tang, X.; Zhu, J.; Zhu, T. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Hoff, R.M.; Christopher, S.A. Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [PubMed]
- Koelemeijer, R.; Homan, C.; Matthijsen, J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos. Environ. 2006, 40, 5304–5315. [Google Scholar] [CrossRef]
- Engelcox, J.A.; Hoff, R.M.; Haymet, A.D. Recommendations on the use of satellite remote-sensing data for urban air quality. J. Air Waste Manag. Assoc. 2004, 54, 1360–1371. [Google Scholar] [CrossRef]
- Cermak, J.; Knutti, R. Beijing Olympics as an aerosol field experiment. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Fang, X.; Zou, B.; Liu, X.; Sternberg, T.; Zhai, L. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sens. Environ. 2016, 186, 152–163. [Google Scholar] [CrossRef]
- Geng, G.; Zhang, Q.; Martin, R.V.; Donkelaar, A.V.; Huo, H.; Che, H.; Lin, J.; He, K. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ. 2015, 166, 262–270. [Google Scholar] [CrossRef]
- Kloog, I.; Sorek-Hamer, M.; Lyapustin, A.; Coull, B.; Wang, Y.; Just, A.C.; Schwartz, J.; Broday, D.M. Estimating daily PM2.5 and PM10 across the complex geo-climate region of Israel using MAIAC satellite-based AOD data. Atmos. Environ. 2015, 122, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; He, K.; Li, S.; Wang, Z.; Christiani, D.C.; Koutrakis, P. A statistical model to evaluate the effectiveness of PM2.5 emissions control during the Beijing 2008 Olympic Games. Environ. Int. 2012, 44, 100. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Primbs, T.; Tao, S.; Simonich, S.L.M. Atmospheric particulate matter pollution during the 2008 Beijing Olympics. Environ. Sci. Technol. 2009, 43, 5314. [Google Scholar] [CrossRef] [PubMed]
- You, W.; Zang, Z.; Zhang, L.; Li, Z.; Chen, D.; Zhang, G. Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sens. Environ. 2015, 168, 276–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z. Remote sensing of atmospheric fine particulate matter (PM2.5) mass concentration near the ground from satellite observation. Remote Sens. Environ. 2015, 160, 252–262. [Google Scholar] [CrossRef]
- Dey, S.; Girolamo, L.D.; Donkelaar, A.V.; Tripathi, S.N.; Gupta, T.; Mohan, M. Variability of outdoor fine particulate (PM2.5) concentration in the Indian subcontinent: A remote sensing approach. Remote Sens. Environ. 2012, 127, 153–161. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Lyapustin, A.; Wang, Y.; Al-Hamdan, M.Z.; Crosson, W.L.; Estes, M.G., Jr.; Estes, S.M.; Quattrochi, D.A.; Puttaswamy, S.J. Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model. Remote Sens. Environ. 2014, 140, 220–232. [Google Scholar] [CrossRef]
- Tal, T.; Chang, J.C.; Kan, Y.W.; Benedict, Y.T.S. Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008 in Taiwan. Atmos. Environ. 2011, 45, 4777–4788. [Google Scholar]
- Chu, D.A.; Tsai, T.C.; Chen, J.P.; Chang, S.C.; Jeng, Y.J.; Chiang, W.L.; Lin, N.H. Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements. Atmos. Environ. 2013, 79, 172–187. [Google Scholar] [CrossRef]
- Yong, H.; Wu, Y.; Wang, T.; Zhuang, B.; Shu, L.; Zhao, K. Impacts of elevated-aerosol-layer and aerosol type on the correlation of AOD and particulate matter with ground-based and satellite measurements in Nanjing, Southeast China. Sci. Total Environ. 2015, 532, 195. [Google Scholar]
- Li, J.; Carlson, B.E.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Xin, J.; Gong, C.; Liu, Z.; Cong, Z.; Gao, W.; Song, T.; Pan, Y.; Sun, Y.; Ji, D.; Wang, L. The observation-based relationships between PM2.5 and AOD over China. J. Geophys. Res. Atmos. 2016, 121. [Google Scholar] [CrossRef]
- Yu, S.Y.; Ricketts, R.D.; Colman, S.M. Determining the spatial and temporal patterns of climate changes in China’s western interior during the last 15 ka from lacustrine oxygen isotope records. J. Quat. Sci. 2009, 24, 237–247. [Google Scholar] [CrossRef]
- Dey, S.; Tripathi, S.N. Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra. Atmos. Chem. Phys. 2007, 6, 11681–11725. [Google Scholar]
- Kahn, R.A.; Li, W.H.; Moroney, C.; Diner, D.J.; Martonchik, J.V.; Fishbein, E. Aerosol source plume physical characteristics from space-based multiangle imaging. J. Geophys. Res. Atmos. 2007, 112, 236–242. [Google Scholar] [CrossRef]
- Meng, Q.Y.; Turpin, B.J.; Polidori, A.; Lee, J.H.; Weisel, C.; Morandi, M.; Colome, S.; Stock, T.; Winer, A.; Zhang, J. PM2.5 of ambient origin: Estimates and exposure errors relevant to PM epidemiology. Environ. Sci. Technol. 2005, 39, 5105–5112. [Google Scholar] [CrossRef] [PubMed]
- HJ 655-2013: Technical Specifications for Installation and Acceptance of Ambient Air Quality Continuous Automated Monitoring System for PM10 and PM2.5. Available online: http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201308/t20130802_256855.shtml (accessed on 28 September 2017).
- China Environmental Monitoring Center. Available online: http://113.108.142.147:20035/emcpublish/ (accessed on 31 August 2017).
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.-J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Nazeer, M. Validation of Aqua-MODIS C051 and C006 operational aerosol products using AERONET measurements over Pakistan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2074–2080. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- The MODIS Level2 Aerosol Products (Collection 6) Referrer to the LAADS Website. Available online: http://ladsweb.nascom.nasa.gov/data/search.html (accessed on 31 August 2017).
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A. The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Campbell, J.R.; Reid, J.S.; Westphal, D.L.; Zhang, J.; Tackett, J.L.; Chew, B.N.; Welton, E.J.; Shimizu, A.; Sugimoto, N.; Aoki, K. Characterizing the vertical profile of aerosol particle extinction and linear depolarization over Southeast Asia and the maritime continent: The 2007–2009 view from CALIOP. Atmos. Res. 2013, 122, 520–543. [Google Scholar] [CrossRef]
- NASA LAADS CALIPSO Website. Available online: http://www-calipso.larc.nasa.gov/ (accessed on 31 August 2017).
- GEOS 5-FP. Available online: ftp://rain.ucis.dal.ca (accessed on 31 August 2017).
- Toth, T.D.; Zhang, J.; Reid, J.S.; Westphal, D.L.; Campbell, J.R.; Hyer, E.J.; Shi, Y. Impact of data quality and surface-to-column representativeness on the PM2.5/satellite AOD relationship for the continental United States. Atmos. Chem. Phys. 2013, 13, 31635–31671. [Google Scholar] [CrossRef]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 9769–9795. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Y.; Zhao, Q.; Liu, M.; Zhou, Y.; Bi, J. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model. Atmos. Environ. 2016, 133, 156–164. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide; World Health Organization Regional office for Europe: Copenhagen, Denmark, 2006. [Google Scholar]
- Luo, K.F. Draft of natural geography regionalization of China. Acta Geogr. Sin. 1954, 20, 379–394. [Google Scholar]
- Guo, J.; Miao, Y.; Zhang, Y.; Liu, H.; Li, Z.; Zhang, W.; He, J.; Lou, M.; Yan, Y.; Bian, L. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data. Atmos. Chem. Phys. 2016, 16, 13309–13319. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Chen, B.; Zhou, T.; Yan, H.; Jin, H.; Huang, Z.; Zhang, B. Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 102–112. [Google Scholar] [CrossRef]
- Zhou, J.; Xing, Z.; Deng, J.; Du, K. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmos. Environ. 2016, 135, 20–30. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, H.; Zhang, S.; Xu, J.; Lu, X.; Jin, J.; Wang, C. Estimating and source analysis of surface PM2.5 concentration in the Beijing–Tianjin–Hebei region based on MODIS data and air trajectories. Int. J. Remote Sens. 2016, 37, 4799–4817. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, J.; Schauer, J.J.; Yu, W.; Hu, Y. Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China. Sci. Total Environ. 2016, 577, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhao, T.; Gong, S.; Xu, X.; Han, Y.; Yin, Y.; Tang, L.; He, H.; He, J. Implications of East Asian summer and winter monsoons for interannual aerosol variations over central-eastern China. Atmos. Environ. 2016, 129, 218–228. [Google Scholar] [CrossRef]
- Wang, G.; Deng, T.; Tan, H.; Liu, X.; Yang, H. Research on aerosol profiles and parameterization scheme in Southeast China. Atmos. Environ. 2016, 140, 605–613. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Xin, J.; Li, Z.; Wang, S.; Wang, P.; Hao, W.M.; Nordgren, B.L.; Chen, H.; Wang, L. Seasonal variations in aerosol optical properties over China. Atmos. Chem. Phys. Discuss. 2008, 597–616. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, Y.; Hong, L.; Jianmin, C.; Yang, C. Characterization of aerosol optical properties, chemical composition and mixing states in the winter season in Shanghai, China. J. Environ. Sci. 2014, 26, 2412–2422. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Li, Z.; Holben, B.; Wang, P.; Eck, T.; Chen, H.; Cribb, M.; Zhao, Y. Aerosol optical properties and radiative effects in the Yangtze Delta region of China. J. Geophys. Res. Atmos. 2007, 112, 449–456. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, W.; Heese, B.; Althausen, D.; Baars, H.; Cheng, T.; Shu, X.; Zhang, T. Aerosol optical properties observed by combined Raman-elastic backscatter lidar in winter 2009 in Pearl River Delta, south China. J. Geophys. Res. Atmos. 2014, 119, 2496–2510. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, X.G.; Liang, P. Possible effects of climate change of wind on aerosol variation during winter in Shanghai, China. Particuology 2015, 20, 80–88. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Che, H.; Zhang, R.; Gui, K.; Zhang, H.; Zhao, T. Spatial distribution and temporal variation of aerosol optical depth in the Sichuan Basin, China, the recent ten years. Atmos. Environ. 2016, 147, 434–445. [Google Scholar] [CrossRef]
- Wang, P.; Che, H.; Zhang, X.; Song, Q.; Wang, Y.; Zhang, Z.; Dai, X.; Yu, D. Aerosol optical properties of regional background atmosphere in Northeast China. Atmos. Environ. 2010, 44, 4404–4412. [Google Scholar] [CrossRef]
Provincial Capital | Longitude | Latitude | Terrain Height (m) | PM2.5 | AOD | Y = PM2.5; x = AOD | R | N |
---|---|---|---|---|---|---|---|---|
LHA | 91.11 | 29.66 | 4198 | 26 ± 16 | 0.07 ± 0.15 | Y = −17.7x + 27.5 | −0.16 | 171 |
URU | 87.56 | 43.84 | 745 | 42 ± 40 | 0.37 ± 0.36 | Y = 8.3x + 39.3 | 0.07 | 1818 |
HOH | 111.66 | 40.83 | 1207 | 43 ± 32 | 0.32 ± 0.28 | Y = 6.4x + 41.1 | 0.06 | 2298 |
YCH | 106.21 | 38.50 | 1197 | 49 ± 40 | 0.33 ± 0.28 | Y = 10.4x + 46.1 | 0.07 | 4290 |
LZH | 103.82 | 36.06 | 2009 | 62 ± 91 | 0.22 ± 0.21 | Y = 21.4x + 58.6 | 0.09 | 1916 |
HAR | 126.66 | 45.77 | 135 | 49 ± 57 | 0.55 ± 0.54 | Y = 54.5x + 16.9 | 0.60 | 2575 |
CHC | 125.31 | 43.90 | 208 | 49 ± 47 | 0.53 ± 0.49 | Y = 39.9x + 28.1 | 0.41 | 2169 |
BJC | 116.40 | 39.93 | 10 | 70 ± 69 | 0.71 ± 0.68 | Y = 66.4x + 22.7 | 0.66 | 5331 |
TJC | 117.21 | 39.14 | 5 | 78 ± 70 | 0.79 ± 0.67 | Y = 54.6x + 34.8 | 0.52 | 4381 |
HFC | 117.28 | 31.87 | 40 | 73 ± 50 | 0.73 ± 0.55 | Y = 36.4x + 46.4 | 0.40 | 2752 |
ZHZ | 113.65 | 34.76 | 103 | 86 ± 58 | 1.00 ± 0.70 | Y = 32.9x + 53.5 | 0.39 | 5011 |
WHC | 114.32 | 30.58 | 18 | 81 ± 50 | 0.66 ± 0.50 | Y = 50.1x + 47.7 | 0.50 | 3074 |
NJC | 118.78 | 32.06 | 17 | 71 ± 45 | 0.74 ± 0.56 | Y = 29.8x + 49.0 | 0.37 | 6683 |
NCH | 115.89 | 28.69 | 74 | 54 ± 35 | 0.61 ± 0.44 | Y = 32.6x + 34.6 | 0.41 | 2274 |
XAC | 108.95 | 34.28 | 638 | 61 ± 49 | 0.65 ± 0.44 | Y = 31.2x + 40.2 | 0.28 | 6534 |
SHH | 121.49 | 31.25 | 5 | 69 ± 45 | 0.73 ± 0.47 | Y = 37.6x + 41.6 | 0.39 | 5970 |
FZH | 119.33 | 26.05 | 212 | 37 ± 20 | 0.45 ± 0.35 | Y = 13.9x + 31.0 | 0.24 | 1728 |
GZH | 113.31 | 23.12 | 21 | 56 ± 30 | 0.58 ± 0.41 | Y = 33.7x + 36.8 | 0.45 | 3939 |
HZH | 120.22 | 30.26 | 4 | 67 ± 42 | 0.66 ± 0.51 | Y = 64.3x + 35.4 | 0.61 | 4253 |
MAC | 113.56 | 22.20 | 22 | 55 ± 29 | 0.57 ± 0.38 | Y = 28.6x + 39.0 | 0.37 | 3311 |
CHD | 104.07 | 30.68 | 530 | 62 ± 45 | 0.67 ± 0.42 | Y = 48.6x + 29.5 | 0.45 | 1796 |
KMC | 102.71 | 25.05 | 2089 | 32 ± 18 | 0.20 ± 0.22 | Y = 24.5x + 27.3 | 0.30 | 2002 |
Region | Provincial Capital | from 2014 to 2015 | Spring | Summer | Autumn | Winter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Original | Ratio | PBLH | Original | Ratio | PBLH | Original | Ratio | PBLH | Original | Ratio | PBLH | Original | Ratio | PBLH | ||
Northwest | LHA | −0.16 | - | −0.15 | −0.35 | - | −0.28 | −0.30 | - | −0.17 | −0.14 | - | −0.13 | −0.25 | - | −0.19 |
URU | 0.07 | 0.14 | 0.37 | 0.18 | 0.07 | 0.48 | 0.16 | 0.23 | 0.23 | 0.12 | 0.09 | 0.32 | −0.11 | - | 0.04 | |
HOH | 0.06 | 0.27 | 0.44 | 0.40 | 0.40 | 0.49 | 0.55 | 0.25 | 0.57 | 0.12 | 0.12 | 0.25 | 0.35 | 0.36 | 0.60 | |
YCH | 0.07 | 0.07 | 0.40 | 0.36 | 0.22 | 0.41 | 0.25 | 0.24 | 0.27 | 0.17 | 0.11 | 0.39 | 0.37 | 0.51 | 0.51 | |
LZH | 0.09 | 0.06 | 0.13 | 0.18 | 0.31 | 0.29 | 0.41 | 0.44 | 0.44 | 0.20 | 0.11 | 0.32 | 0.01 | 0.05 | 0.08 | |
Northeast | HAR | 0.60 | 0.61 | 0.59 | 0.39 | 0.52 | 0.36 | 0.76 | 0.84 | 0.70 | 0.65 | 0.71 | 0.65 | - | - | - |
CHC | 0.41 | 0.86 | 0.36 | 0.54 | 0.55 | 0.52 | 0.67 | 0.93 | 0.61 | 0.50 | 0.72 | 0.46 | 0.41 | 0.49 | 0.17 | |
North China Plain | BJC | 0.66 | 0.58 | 0.56 | 0.69 | 0.65 | 0.56 | 0.72 | 0.51 | 0.61 | 0.80 | 0.80 | 0.56 | 0.72 | 0.55 | 0.59 |
TJC | 0.52 | 0.72 | 0.58 | 0.61 | 0.77 | 0.57 | 0.67 | 0.70 | 0.59 | 0.64 | 0.88 | 0.61 | 0.61 | 0.68 | 0.54 | |
Central China | HFC | 0.40 | 0.67 | 0.57 | 0.30 | 0.59 | 0.48 | 0.79 | 0.39 | 0.73 | 0.53 | 0.56 | 0.54 | 0.51 | 0.71 | 0.57 |
ZHZ | 0.39 | 0.55 | 0.42 | 0.44 | 0.51 | 0.27 | 0.51 | 0.50 | 0.33 | 0.54 | 0.65 | 0.63 | 0.63 | 0.63 | 0.42 | |
WHC | 0.50 | 0.69 | 0.60 | 0.46 | 0.52 | 0.46 | 0.75 | 0.38 | 0.67 | 0.37 | 0.50 | 0.38 | 0.51 | 0.76 | 0.55 | |
NJC | 0.37 | 0.82 | 0.48 | 0.29 | 0.45 | 0.44 | 0.70 | 0.51 | 0.69 | 0.30 | 0.30 | 0.30 | 0.53 | 0.89 | 0.54 | |
NCH | 0.41 | 0.69 | 0.42 | 0.46 | 0.47 | 0.38 | 0.77 | 0.76 | 0.68 | 0.35 | 0.72 | 0.38 | 0.42 | 0.63 | 0.34 | |
XAC | 0.28 | 0.49 | 0.48 | 0.26 | 0.50 | 0.41 | 0.62 | 0.59 | 0.37 | 0.49 | 0.49 | 0.49 | 0.50 | 0.84 | 0.52 | |
Southeastern coast | SHH | 0.39 | 0.45 | 0.34 | 0.35 | 0.48 | 0.28 | 0.50 | 0.70 | 0.38 | 0.58 | 0.58 | 0.27 | 0.54 | 0.53 | 0.41 |
FZH | 0.24 | 0.18 | 0.21 | 0.39 | 0.70 | 0.39 | 0.35 | - | 0.24 | 0.34 | - | 0.15 | 0.33 | - | 0.25 | |
GZH | 0.45 | 0.27 | 0.44 | 0.34 | 0.62 | 0.30 | 0.32 | - | 0.31 | 0.38 | 0.08 | 0.31 | 0.60 | 0.29 | 0.52 | |
HZH | 0.61 | 0.58 | 0.48 | 0.48 | 0.69 | 0.44 | 0.70 | 0.20 | 0.63 | 0.38 | 0.16 | 0.37 | 0.60 | 0.52 | 0.57 | |
MAC | 0.37 | 0.20 | 0.29 | 0.28 | 0.63 | 0.19 | 0.35 | - | 0.24 | 0.33 | 0.20 | 0.28 | 0.58 | 0.20 | 0.49 | |
Southwest | CHD | 0.45 | 0.89 | 0.52 | 0.54 | 0.56 | 0.38 | 0.58 | 0.71 | 0.46 | 0.68 | 0.70 | 0.44 | 0.52 | 0.92 | 0.56 |
KMC | 0.30 | 0.40 | 0.32 | 0.44 | 0.70 | 0.40 | 0.48 | - | 0.03 | 0.22 | 0.98 | 0.14 | 0.15 | 0.35 | 0.31 |
Region | The Year 2016 | Spring | Summer | Autumn | Winter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Original | Ratio | PBLH | Original | Ratio | PBLH | Original | Ratio | PBLH | Original | Ratio | PBLH | Original | Ratio | PBLH | |
Northwest | 0.09 | 0.49 | 0.52 | 0.08 | 0.40 | 0.43 | 0.19 | 0.68 | 0.67 | 0.16 | 0.20 | 0.28 | 0.29 | - | 0.41 |
Northeast | 0.45 | 0.48 | 0.30 | 0.40 | 0.52 | 0.20 | 0.50 | 0.51 | 0.16 | 0.50 | 0.62 | 0.16 | 0.66 | 0.68 | 0.58 |
North China Plain | 0.35 | 0.40 | 0.35 | 0.47 | 0.51 | 0.22 | 0.46 | 0.51 | 0.11 | 0.41 | 0.45 | 0.27 | 0.28 | - | 0.47 |
Central China | 0.31 | 0.44 | 0.41 | 0.43 | 0.46 | 0.43 | 0.31 | 0.26 | 0.31 | 0.38 | 0.51 | 0.50 | 0.22 | 0.62 | 0.35 |
Southeastern coast | 0.48 | 0.47 | 0.27 | 0.41 | 0.55 | 0.24 | 0.48 | 0.59 | 0.19 | 0.43 | 0.33 | 0.40 | 0.46 | 0.44 | 0.30 |
Southwest | 0.36 | 0.61 | 0.34 | 0.38 | 0.48 | 0.32 | 0.39 | 0.30 | 0.15 | 0.41 | 0.62 | 0.32 | 0.43 | 0.75 | 0.42 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Huang, Y.; Zhang, T.; Zhu, Z.; Ji, Y.; Xiang, H. Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China. Remote Sens. 2017, 9, 1038. https://doi.org/10.3390/rs9101038
Gong W, Huang Y, Zhang T, Zhu Z, Ji Y, Xiang H. Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China. Remote Sensing. 2017; 9(10):1038. https://doi.org/10.3390/rs9101038
Chicago/Turabian StyleGong, Wei, Yusi Huang, Tianhao Zhang, Zhongmin Zhu, Yuxi Ji, and Hao Xiang. 2017. "Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China" Remote Sensing 9, no. 10: 1038. https://doi.org/10.3390/rs9101038
APA StyleGong, W., Huang, Y., Zhang, T., Zhu, Z., Ji, Y., & Xiang, H. (2017). Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China. Remote Sensing, 9(10), 1038. https://doi.org/10.3390/rs9101038