Detection of Informal Settlements from VHR Images Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Method
2.1. CNN Building Blocks
2.2. Adopted Architecture
3. Experimental Set-Up
3.1. Data
3.2. Training Hyperparameters
3.3. Spatial Feature Learning Hyperparameters
3.4. Baseline Method: SVM with GLCM Features and LBP Features
3.5. Size of the Training and Test Set
4. Results and Analysis
4.1. Spatial Feature Learning Hyperparameters
4.2. Size of the Training Set
4.3. Classification Results
4.4. Visualization of Feature Maps
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kironde, J.M.L. The regulatory framework, unplanned development and urban poverty: Findings from Dar es Salaam, Tanzania. Land Use Policy 2006, 23, 460–472. [Google Scholar] [CrossRef]
- UN-Habitat. The Challenge of Slums—Global Report on Human Settlements; UN-Habitat: Nairobi, Kenya, 2003. [Google Scholar]
- UN-Habitat. Habitat. Habitat III Issue Papers 22—Informal Settlements. In United Nations Conference on Housing and Sustainable Urban Development; UN-Habitat: Nairobi, Kenya, 2015; Volume 2015, pp. 1–8. [Google Scholar]
- Owen, K.K.; Wong, D.W. An approach to differentiate informal settlements using spectral, texture, geomorphology and road accessibility metrics. Appl. Geogr. 2013, 38, 107–118. [Google Scholar] [CrossRef]
- Kuffer, M.; Barros, J.; Sliuzas, R.V. The development of a morphological unplanned settlement index using very-high-resolution (VHR) imagery. Comput. Environ. Urban Syst. 2014, 48, 138–152. [Google Scholar] [CrossRef]
- Hofmann, P.; Strobl, J.; Blaschke, T.; Kux, H. Detecting informal settlements from Quickbird data in Rio de Janeiro using an object based approach. Object-Based Image Anal. 2008, 531–553. [Google Scholar] [CrossRef]
- Kuffer, M.; Barros, J. Urban Morphology of Unplanned Settlements: The Use of Spatial Metrics in VHR Remotely Sensed Images. Procedia Environ. Sci. 2011, 7, 152–157. [Google Scholar] [CrossRef]
- Shekhar, S. Detecting slums from Quickbird data in Pune using an object oriented approach. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B8, 519–524. [Google Scholar] [CrossRef]
- Bergado, J.R.A.; Persello, C.; Gevaert, C. A deep learning approach to the classification of sub-decimeter resolution aerial images. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 1516–1519. [Google Scholar]
- Haralick, R.; Shanmugan, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Pesaresi, M.; Benediktsson, J.A. A New Approach for the Morphological Segmentation of High-Resolution Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [Google Scholar] [CrossRef]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Baud, I. Extraction of Slum Areas From VHR Imagery Using GLCM Variance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1830–1840. [Google Scholar] [CrossRef]
- Kit, O.; Lüdeke, M.; Reckien, D. Texture-based identification of urban slums in Hyderabad, India using remote sensing data. Appl. Geogr. 2012, 32, 660–667. [Google Scholar] [CrossRef]
- Ella, L.P.A.; van den Bergh, F.; van Wyk, B.J.; van Wyk, M.A. A Comparison of Texture Feature Algorithms for Urban Settlement Classification. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 6–11 July 2008; Volume 3, pp. III-1308–III-1311. [Google Scholar]
- Graesser, J.; Cheriyadat, A.; Vatsavai, R.R.; Chandola, V.; Long, J.; Bright, E. Image based characterization of formal and informal neighborhoods in an urban landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1164–1176. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral—Spatial Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep Learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column Deep Neural Networks for Image Classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 3642–3649. [Google Scholar]
- Paisitkriangkrai, S.; Sherrah, J.; Janney, P.; van den Hengel, A. Semantic Labeling of Aerial and Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2868–2881. [Google Scholar] [CrossRef]
- Längkvist, M.; Kiselev, A.; Alirezaie, M.; Loutfi, A. Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks. Remote Sens. 2016, 8, 329. [Google Scholar] [CrossRef]
- Alshehhi, R.; Reddy, P.; Lee, W.; Dalla, M. Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Mnih, V. Machine Learning for Aerial Image Labeling. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2013. [Google Scholar]
- Luus, F.P.S.; Salmon, B.P.; Van Den Bergh, F.; Maharaj, B.T.J. Multiview Deep Learning for Land-Use Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2448–2452. [Google Scholar] [CrossRef]
- Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. arXiv, 2015; 1–11arXiv:1508.00092. [Google Scholar]
- Ševo, I.; Avramović, A. Convolutional Neural Network Based Automatic Object Detection on Aerial Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 740–744. [Google Scholar] [CrossRef]
- Marmanis, D.; Datcu, M.; Esch, T.; Stilla, U. Deep Learning Earth Observation Classification Using ImageNet Pretrained Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 105–109. [Google Scholar] [CrossRef]
- Volpi, M.; Tuia, D. Dense semantic labeling of sub-decimeter resolution images with convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 2017, 55, 881–893. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–25 June 2010; pp. 807–814. [Google Scholar]
- Kivinen, J.J.; Williams, C.K.I. Transformation equivariant Boltzmann machines. In Lecture Notes Computer Science(LNCS) (Including Its Subseries Lecture Notes Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2011; Volume 6791, pp. 1–9. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Stochastic pooling for regularization of deep convolutional neural networks. arXiv, 2013; arXiv:1301.3557. [Google Scholar]
- Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010; Springer: Cham, Swizerland, 2010; pp. 177–186. [Google Scholar]
- LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.-R. Efficient BackProp. In Neural Networks: Tricks of the Trade, 2nd ed.; Montavon, G., Orr, G.B., Müller, K.-R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 9–48. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Sliuzas, R.V.; Hill, A.; Lindner, C.; Greiving, S. Dar es Salaam Land Use and Informal Settlement Data Set; NASA Socioe: Palisades, NY, USA, 2016. [Google Scholar]
- Sliuzas, R.V. Managing Informal Settlements: A Study Using Geo-Information in Dar es Salaam, Tanzania. Ph.D. Dissertation, Utrecht University, Utrecht, The Netherlands, 2004. [Google Scholar]
- Theano Development Team. Theano: A {Python} framework for fast computation of mathematical expressions. arXiv, 2016; arXiv:1605.02688. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 23 October 2017).
- Rossum, G. Python Reference Manual; CWI (Centre for Mathematics and Computer Science): Amsterdam, The Netherlands, 1995. [Google Scholar]
- Farabet, C.; Couprie, C.; Najman, L.; Lecun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruzzone, L.; Persello, C. Handbook of Pattern Recognition and Computer Vision. In Handbook of Pattern Recognition and Computer Vision; Chen, C.H., Ed.; World Scientific: Singapore, 2010; pp. 329–352. [Google Scholar]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. Adv. Pattern Recognit. 2001, 2013, 399–408. [Google Scholar]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision–ECCV 2014; Springer: Cham, Swizerland, 2014; Volume 8689, pp. 818–833. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR 2014, arXiv:1409.1556. [Google Scholar]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 28, p. 6. [Google Scholar]
- Kohli, D.; Stein, A.; Sliuzas, R. Uncertainty analysis for image interpretations of urban slums. Comput. Environ. Urban Syst. 2016, 60, 37–49. [Google Scholar] [CrossRef]
- Marconcini, M.; Esch, T.; Chrysoulakis, N.; Düzgün, H.S.; Tal, A.; Forth, T.H.; Aviv, T. Towards EO-based sustainable urban planning and management. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 4273–4276. [Google Scholar]
- Sliuzas, R. Opportunities for enhancing communication in settlement upgrading with geographic information technology-based support tools. Habitat Int. 2003, 27, 613–628. [Google Scholar] [CrossRef]
- Ward, P.M. Housing rehab for consolidated informal settlements: A new policy agenda for 2016 UN-Habitat III. Habitat Int. 2016, 50, 373–384. [Google Scholar] [CrossRef]
- Hasan, A. Orangi Pilot Project: The expansion of work beyond Orangi and the mapping of informal settlements. Environ. Urban. 2006, 18, 451–480. [Google Scholar] [CrossRef]
- Karanja, I. An enumeration and mapping of informal settlements in Kisumu, Kenya, implemented by their inhabitants. Environ. Urban. 2010, 22, 217–239. [Google Scholar] [CrossRef]
- Abbott, J. An analysis of informal settlement upgrading and critique of existing methodological approaches. Habitat Int. 2002, 26, 303–315. [Google Scholar] [CrossRef]
- Marais, L.; Ntema, J. The upgrading of an informal settlement in South Africa: Two decades onwards. Habitat Int. 2013, 39, 85–95. [Google Scholar] [CrossRef]
- Musakwa, W.; Niekerk, A. Van Implications of land use change for the sustainability of urban areas: A case study of Stellenbosch, South Africa. Cities 2013, 32, 143–156. [Google Scholar] [CrossRef] [Green Version]
Training Hyperparameters | Spatial Feature Learning Hyperparameters |
---|---|
Learning rate, | Patch size, |
Momentum, | Convolutional layers, |
Learning rate decay, | Fully connected layers, |
Early stopping patience, | Number of filters, |
Maximum number of epochs, | Filter size, |
Weight decay, | |
Dropout rate, |
Parameters | Values |
---|---|
Layers 1 | I − (C – A – P − D1) × − (F−D2) × − O |
Nonlinearity used in A and F | RELU |
Nonlinearity used in O | softmax |
Pooling size | 2 |
Width of F | 128 |
Parameters | Patch Size | Convolutional Layers | Fully Connected | Number of Filters | Filter Size |
---|---|---|---|---|---|
Patch size | (65,99,129,165) | 99 | 99 | 99 | 99 |
Convolutional layers | 2 | (2,3,4) | 2 | 2 | 2 |
Fully connected | 1 | 1 | (1,2,3) | 1 | 1 |
Number of filters | 8 | 8 | 8 | (8,16,32,64) | 8 |
Filter size | 7 | 7 | 7 | 7 | (7,17,25) |
Tile ID | SVM | SVM + GLCM | SVM + LBP | CNN-2 | CNN-3 | CNN-4 | CNN-5 | CNN-6 |
---|---|---|---|---|---|---|---|---|
Tile 1 | 59.48 | 91.99 | 90.77 | 88.06 | 89.60 | 92.48 | 93.05 | 92.73 |
Tile 2 | 78.61 | 88.40 | 90.49 | 88.33 | 90.11 | 91.28 | 92.24 | 91.77 |
Tile 3 | 68.45 | 79.40 | 90.18 | 82.57 | 87.20 | 87.78 | 89.85 | 90.11 |
OA | 68.84 | 86.60 | 90.48 | 86.32 | 88.97 | 90.51 | 91.71 | 91.53 |
Approach | Overall Accuracy (%) | Class | Accuracy (%) | Error (%) | ||
---|---|---|---|---|---|---|
User | Producer | Commission | Omission | |||
SVM | 68.84 | Informal | 40.61 | 71.60 | 59.39 | 28.40 |
Other | 88.68 | 68.00 | 11.32 | 32.00 | ||
SVM + GLCM | 86.60 | Informal | 75.63 | 90.44 | 24.37 | 9.56 |
Other | 94.39 | 84.65 | 5.61 | 15.35 | ||
SVM + LBP | 90.48 | Informal | 83.87 | 92.37 | 16.13 | 7.63 |
Other | 95.13 | 89.35 | 4.87 | 10.65 | ||
CNN-2 | 86.32 | Informal | 84.71 | 84.71 | 15.29 | 15.29 |
Other | 87.38 | 87.37 | 12.62 | 12.63 | ||
CNN-3 | 88.97 | Informal | 81.56 | 91.38 | 18.44 | 8.62 |
Other | 89.66 | 87.58 | 10.34 | 12.42 | ||
CNN-4 | 90.51 | Informal | 85.29 | 91.14 | 14.71 | 8.86 |
Other | 94.17 | 90.11 | 5.83 | 9.89 | ||
CNN-5 | 91.71 | Informal | 88.22 | 91.40 | 11.78 | 8.60 |
Other | 94.17 | 91.92 | 5.83 | 8.08 | ||
CNN-6 | 91.53 | Informal | 87.70 | 91.43 | 12.30 | 8.57 |
Other | 94.22 | 91.60 | 5.78 | 8.40 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mboga, N.; Persello, C.; Bergado, J.R.; Stein, A. Detection of Informal Settlements from VHR Images Using Convolutional Neural Networks. Remote Sens. 2017, 9, 1106. https://doi.org/10.3390/rs9111106
Mboga N, Persello C, Bergado JR, Stein A. Detection of Informal Settlements from VHR Images Using Convolutional Neural Networks. Remote Sensing. 2017; 9(11):1106. https://doi.org/10.3390/rs9111106
Chicago/Turabian StyleMboga, Nicholus, Claudio Persello, John Ray Bergado, and Alfred Stein. 2017. "Detection of Informal Settlements from VHR Images Using Convolutional Neural Networks" Remote Sensing 9, no. 11: 1106. https://doi.org/10.3390/rs9111106
APA StyleMboga, N., Persello, C., Bergado, J. R., & Stein, A. (2017). Detection of Informal Settlements from VHR Images Using Convolutional Neural Networks. Remote Sensing, 9(11), 1106. https://doi.org/10.3390/rs9111106