Visual Sensing for Urban Flood Monitoring
Abstract
:1. Introduction
1.1. Urban Floods
1.2. Flood Monitoring
1.2.1. Gauge Sensing
1.2.2. Remote Sensing
1.2.3. Flood Risk Mapping
1.3. Proposed Flood Visual Sensing
2. Intelligent Urban Flood Visual Sensing of Smart Cities
2.1. Flood Visual Sensing
Event-Based Trigger
// Image Parse for Day/Night/Low−visibility/Fog−rain−noise/Water body.// |
// Range from prior. |
Limit_PercentOfDarkSamplePixels=50; // dark % of sample pixels (pixel intensity < 50) |
Limit_ImVisibility=80; // mean intensity of image |
Limit_ImVisibilityOfSamplePixels=80; // number of sample pixels (pixel intensity < 80) |
Limit_DarkChannelAvg=60; // mean intensity of dark channel image |
Limite_SeedROITexturePrc=2; // Edge of seed ROI > 2% = riverbed or ground. |
// Image parser. |
if (PercentOfDarkSamplePixels > Limit_PercentOfDarkSamplePixels) |
return // Blank image will stop here |
elseif (ImVisibility < Limit_ImVisibility || ImVisibility > Limit_ImVisibility+100) |
return // Too bright or too dark image will stop here |
elseif (ImVisibilityOfSamplePixels < Limit_ImVisibilityOfSamplePixels || ImVisibilityOfSamplePixels > Limit_ImVisibilityOfSamplePixels+100) |
return // Too bright or too dark of sample pixels will stop here |
elseif (DarkChannelAvg < Limit_DarkChannelAvg || DarkChannelAvg > Limit_DarkChannelAvg+100) |
return // Too foggy image will stop here |
elseif (SeedROITexturePrc > Limite_SeedROITexturePrc) |
return // Too much/long edge of seed ROI,riverbed or ground,will stop here |
else |
// Parse Passed. Go to flood detection. |
end |
Parser Item | Function | Object | Image |
---|---|---|---|
PercentOfDarkSamplePixels | Blank Image, Luminance | ||
ImVisibility | Luminance, Contrast | ||
ImVisibilityOfSamplePixels | Luminance, Contrast | ||
DarkChannelAvg | Fog/Haze | ||
SeedROITexturePrc | Waterbody |
2.2. Detection of Runoff
Algorithm 1 Seed-Guided Graph-Based Segmentation |
The input is a graph with vertices and edges. The output is a segmentation of into components .
|
2.3. Calculation of Run off Fluctuation
3. Experimental Section and Discussion
3.1. Monitoring Embankment Overflow
3.2. Water Level Measurement
3.3. Monitoring of Specific Flood-Intruded Area
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Webster, P.J. Meteorology: Improve weather forecasts for the developing world. Nature 2013, 493, 17–19. [Google Scholar] [PubMed]
- Guhathakurta, P.; Sreejith, O.P.; Menon, P.A. Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci. 2011, 120, 359–373. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Wade, S.D.; Rance, J.; Reynard, N. The UK climate change risk assessment 2012: Assessing the impacts on water resources to inform policy makers. Water Resour. Manag. 2013, 27, 1085–1109. [Google Scholar] [CrossRef]
- Ratnapradipa, D. 2012 NEHA/UL sabbatical report vulnerability to potential impacts of climate change: Adaptation and risk communication strategies for environmental health practitioners in the United Kingdom. J. Environ. Health 2014, 76, 28–33. [Google Scholar] [PubMed]
- Heilig, G.K. World Urbanization Prospects: The 2011 Revision; United Nations, Department of Economic and Social Affairs (DESA): New York, NY, USA, 2012. [Google Scholar]
- Borga, M.; Stoffel, M.; Marchi, L.; Marra, F.; Jakob, M. Hydrogeomorphic response to extreme rainfall in headwater systems: Flash floods and debris flows. J. Hydrol. 2014, 518, 194–205. [Google Scholar] [CrossRef]
- Borga, M.; Anagnostou, E.N.; Bloschl, G.; Creutin, J.D. Flash flood forecasting, warning and risk management: The hydrate project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Marin-Perez, R.; Garcia-Pintado, J.; Gomez, A.S. A real-time measurement system for long-life flood monitoring and warning applications. Sensors 2012, 12, 4213–4236. [Google Scholar] [CrossRef] [PubMed]
- Li, M.W.; Li, G.L.; Jiang, Y.Z. The application of the electrode type water level gauge in reclaimed water treatment control system. Appl. Mech. Mater. 2013, 333–335, 2297–2300. [Google Scholar] [CrossRef]
- Ji, Y.N.; Zhang, M.J.; Wang, Y.C.; Wang, P.; Wang, A.B.; Wu, Y.; Xu, H.; Zhang, Y.N. Microwave-photonic sensor for remote water-level monitoring based on chaotic laser. Int. J. Bifurc. Chaos 2014, 24, 1450032. [Google Scholar] [CrossRef]
- Wei, R.; Sudau, A. Geodetic aspects of water-level gauge elevations/elevation changes and gauge set-points in coastal waters. Hydrol. Wasserbewirtsch. 2012, 56, 257–275. [Google Scholar]
- Cretaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Berge-Nguyen, M.; Gennero, M.C.; Nino, F.; del Rio, R.A.; Cazenave, A.; et al. Sols: A lake database to monitor in the near real time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Vittucci, C.; Guerriero, L.; Ferrazzoli, P.; Rahmoune, R.; Barraza, V.; Grings, F. River water level prediction using passive microwave signatures—a case study: The Bermejo basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3903–3914. [Google Scholar] [CrossRef]
- Biswas, R.K.; Jayawardena, A.W. Water level prediction by artificial neural network in a flashy transboundary river of Bangladesh. Glob. Nest J. 2014, 16, 432–444. [Google Scholar]
- Ouma, Y.; Tateishi, R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water 2014, 6, 1515–1545. [Google Scholar] [CrossRef]
- Hall, A.C.; Schumann, G.J.P.; Bamber, J.L.; Bates, P.D.; Trigg, M.A. Geodetic corrections to amazon river water level gauges using ICESat altimetry. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007, 45, RG2002. [Google Scholar] [CrossRef]
- Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood detection from multi-temporal SAR data using harmonic analysis and change detection. Int. J. Appl. Earth Obs. Geoinform. 2015, 38, 15–24. [Google Scholar] [CrossRef]
- Schmitt, A.; Brisco, B. Wetland monitoring using the curvelet-based change detection method on polarimetric SAR imagery. Water 2013, 5, 1036–1051. [Google Scholar] [CrossRef]
- Grings, F.M.; Ferrazzoli, P.; Karszenbaum, H.; Salvia, M.; Kandus, P.; Jacobo-Berlles, J.C.; Perna, P. Model investigation about the potential of C band SAR in herbaceous wetlands flood monitoring. Int. J. Remote Sens. 2008, 29, 5361–5372. [Google Scholar] [CrossRef]
- Simon, R.N.; Tormos, T.; Danis, P.A. Very high spatial resolution optical and radar imagery in tracking water level fluctuations of a small inland reservoir. Int. J. Appl. Earth Obs. Geoinform. 2015, 38, 36–39. [Google Scholar] [CrossRef]
- Becker, M.; da Silva, J.S.; Calmant, S.; Robinet, V.; Linguet, L.; Seyler, F. Water level fluctuations in the Congo basin derived from Envisat satellite altimetry. Remote Sens. 2014, 6, 9340–9358. [Google Scholar] [CrossRef]
- Ticehurst, C.; Guerschman, J.; Chen, Y. The strengths and limitations in using the daily MODIS open water likelihood algorithm for identifying flood events. Remote Sens. 2014, 6, 11791–11809. [Google Scholar] [CrossRef]
- Sulistioadi, Y.B.; Tseng, K.H.; Shum, C.K.; Hidayat, H.; Sumaryono, M.; Suhardiman, A.; Setiawan, F.; Sunarso, S. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst. Sci. 2015, 19, 341–359. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Brocca, L.; Barbetta, S.; Faruolo, M.; Lacava, T.; Moramarco, T. Coupling MODIS and radar altimetry data for discharge estimation in poorly gauged river basins. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 141–148. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Chini, M.; Boni, G.; Squicciarino, G.; Candela, L. Flood mapping by SAR: Possible approaches to mitigate errors due to ambiguous radar signatures. In Proceeding of 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 3850–3853.
- Mason, D.C.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H.L. Detection of flooded urban areas in high resolution synthetic aperture radar images using double scattering. Int. J. Appl. Earth Obs. Geoinform. 2014, 28, 150–159. [Google Scholar] [CrossRef]
- Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood extent mapping for Namibia using change detection and thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [Google Scholar] [CrossRef]
- Garcia-Pintado, J.; Neal, J.C.; Mason, D.C.; Dance, S.L.; Bates, P.D. Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling. J. Hydrol. 2013, 495, 252–266. [Google Scholar] [CrossRef]
- Martinis, S.; Kersten, J.; Twele, A. A fully automated Terrasar-x based flood service. ISPRS J. Photogramm. Remote Sens. 2015, 104, 203–212. [Google Scholar] [CrossRef]
- Giustarini, L.; Vernieuwe, H.; Verwaeren, J.; Chini, M.; Hostache, R.; Matgen, P.; Verhoest, N.E.C.; De Baets, B. Accounting for image uncertainty in SAR-based flood mapping. Int. J. Appl. Earth Obs. Geoinform. 2015, 34, 70–77. [Google Scholar] [CrossRef]
- Yucel, I.; Onen, A.; Yilmaz, K.K.; Gochis, D.J. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol. 2015, 523, 49–66. [Google Scholar] [CrossRef]
- Peters, J.M.; Schumacher, R.S. Mechanisms for organization and echo training in a flash-flood-producing mesoscale convective system. Mon. Weather Rev. 2015, 143, 1058–1085. [Google Scholar] [CrossRef]
- Olsson, J.; Simonsson, L.; Ridal, M. Rainfall nowcasting: Predictability of short-term extremes in Sweden. Urban Water J. 2015, 12, 3–13. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.H.; Pan, S.B.; Tang, K.W.; Li, C.Z.; Han, D.W. A real-time flood forecasting system with dual updating of the NWP rainfall and the river flow. Nat. Hazards 2015, 77, 1161–1182. [Google Scholar] [CrossRef]
- Lin, G.F.; Jhong, B.C. A real-time forecasting model for the spatial distribution of typhoon rainfall. J. Hydrol. 2015, 521, 302–313. [Google Scholar] [CrossRef]
- Garcia-Pintado, J.; Mason, D.C.; Dance, S.L.; Cloke, H.L.; Neal, J.C.; Freer, J.; Bates, P.D. Satellite-supported flood forecasting in river networks: A real case study. J. Hydrol. 2015, 523, 706–724. [Google Scholar] [CrossRef]
- Khan, S.; Hong, Y.; Gourley, J.; Khattak, M.; De Groeve, T. Multi-sensor imaging and space-ground cross-validation for 2010 flood along Indus River, Pakistan. Remote Sens. 2014, 6, 2393–2407. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, J.; Jiang, L.; Liu, X.; Tong, Z. Flood disaster risk assessment of rural housings—A case study of Kouqian Town in China. In. J. Environ. Res. Public Health 2014, 11, 3787–3802. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, K.; John, C.M.; Shrivasthava, N.K. Urban flood vulnerability zoning of Cochin City, Southwest coast of India, using remote sensing and GIS. Nat. Hazards 2015, 75, 1271–1286. [Google Scholar] [CrossRef]
- Schumann, G.J.P.; Neal, J.C.; Voisin, N.; Andreadis, K.M.; Pappenberger, F.; Phanthuwongpakdee, N.; Hall, A.C.; Bates, P.D. A first large-scale flood inundation forecasting model. Water Resour. Res. 2013, 49, 6248–6257. [Google Scholar] [CrossRef]
- Schumann, G.J.P.; Bates, P.D.; Neal, J.C.; Andreadis, K.M. Technology: Fight floods on a global scale. Nature 2014, 507, 169. [Google Scholar] [CrossRef] [PubMed]
- Delgoda, D.K.; Saleem, S.K.; Halgamuge, M.N.; Malano, H. Multiple model predictive flood control in regulated river systems with uncertain inflows. Water Resour. Manag. 2013, 27, 765–790. [Google Scholar] [CrossRef]
- Liu, Y.C.; Liu, C.L. A solution for flood control in urban area: Using street block and raft foundation space operation model. Water Resour. Manag. 2014, 28, 4985–4998. [Google Scholar] [CrossRef]
- Tsubaki, R.; Fujita, I.; Tsutsumi, S. Measurement of the flood discharge of a small-sized river using an existing digital video recording system. J. Hydro-Environ. Res. 2011, 5, 313–321. [Google Scholar] [CrossRef]
- Kim, J.; Han, Y.; Hahn, H. Embedded implementation of image-based water-level measurement system. IET Comput. Vis. 2011, 5, 125–133. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Wang, X.; Yu, D.; Liu, K.; Huang, H.; Hu, G. Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata. Nat. Hazards Earth Syst. Sci. 2015, 15, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Creutin, J.D.; Muste, M.; Bradley, A.A.; Kim, S.C.; Kruger, A. River gauging using PIV techniques: A proof of concept experiment on the Iowa River. J. Hydrol. 2003, 277, 182–194. [Google Scholar] [CrossRef]
- Fujita, I.; Watanabe, H.; Tsubaki, R. Development of a non-intrusive and efficient flow monitoring technique: The spacetime image velocimetry (STIV). Int. J. River Basin Manag. 2007, 5, 105–114. [Google Scholar] [CrossRef]
- Qin, C.C.; Zhang, G.P.; Zhou, Y.C.; Tao, W.B.; Cao, Z.G. Integration of the saliency-based seed extraction and random walks for image segmentation. Neurocomputing 2014, 129, 378–391. [Google Scholar] [CrossRef]
- Ducournau, A.; Bretto, A. Random walks in directed hypergraphs and application to semi-supervised image segmentation. Comput. Vis. Image Underst. 2014, 120, 91–102. [Google Scholar] [CrossRef]
- Grady, L.; Schiwietz, T.; Aharon, S.; Westermann, M. Random walks for interactive organ segmentation in two and three dimensions: Implementation and validation. Medical Image Computing and Computer-Assisted Intervention—Miccai 2005 2005, 3750, 773–780. [Google Scholar]
- Foggia, P.; Percannella, G.; Vento, M. Graph matching and learning in pattern recognition in the last 10 years. Int. J. Pattern Recognit. Artif. Intell. 2014, 28, 1450001. [Google Scholar] [CrossRef]
- Vantaram, S.R.; Saber, E. Survey of contemporary trends in color image segmentation. J. Electron. Imaging 2012, 21, 040901. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Chu, E.; Ku, L.-W.; Liu, J. Active disaster response system for a smart building. Sensors 2014, 14, 17451–17470. [Google Scholar] [CrossRef] [PubMed]
- Lynggaard, P.; Skouby, K.E. Deploying 5G-technologies in smart city and smart home wireless sensor networks with interferences. Wirel. Pers. Commun. 2015, 81, 1399–1413. [Google Scholar] [CrossRef]
- Jablonski, I. Smart transducer interface-from networked on-site optimization of energy balance in research-demonstrative office building to smart city conception. IEEE Sens. J. 2015, 15, 2468–2478. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 2341–2353. [Google Scholar]
- Fabijanska, A.; Goclawski, J. New accelerated graph-based method of image segmentation applying minimum spanning tree. IET Image Process. 2014, 8, 239–251. [Google Scholar] [CrossRef]
- Felzenszwalb, P.; Felzenszwalb, D. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [Google Scholar] [CrossRef]
- Pandey, R.K.; Cretaux, J.F.; Berge-Nguyen, M.; Tiwari, V.M.; Drolon, V.; Papa, F.; Calmant, S. Water level estimation by remote sensing for the 2008 flooding of the Kosi River. Int. J. Remote Sens. 2014, 35, 424–440. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.J.; You, Y.L.; Mullens, E.; Hu, J.J.; Yuan, Y.; Huang, M.Y.; He, L.; Luo, Y.M.; Zeng, X.J.; et al. Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations. PLoS ONE 2014, 9, e89681. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.D. Water management: Reduce urban flood vulnerability. Nature 2012, 481, 145–145. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.D.; Lim, H.; Tantasarin, C.; Jachowski, N.R.; Wasson, R. Floods, false hope, and the future. Hydrol. Process. 2012, 26, 1748–1750. [Google Scholar] [CrossRef]
- Lee, C.S.; Huang, L.R.; Chen, D.Y.C. The modification of the typhoon rainfall climatology model in taiwan. Nat. Hazards Earth Syst. Sci. 2013, 13, 65–74. [Google Scholar] [CrossRef]
- Lee, C.S.; Ho, H.Y.; Lee, K.T.; Wang, Y.C.; Guo, W.D.; Chen, D.Y.C.; Hsiao, L.F.; Chen, C.H.; Chiang, C.C.; Yang, M.J.; et al. Assessment of sewer flooding model based on ensemble quantitative precipitation forecast. J. Hydrol. 2013, 506, 101–113. [Google Scholar] [CrossRef]
- Costa, D.; Guedes, L.; Vasques, F.; Portugal, P. Research trends in wireless visual sensor networks when exploiting prioritization. Sensors 2015, 15, 1760–1784. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.H.; Xiong, H.K.; Lee, I. Recent advances in wireless visual sensor networks. Int. J. Distrib. Sens. Net. 2014, 2014, 735674. [Google Scholar] [CrossRef]
- Tabuada, P.; Caliskan, S.Y.; Rungger, M.; Majumdar, R. Towards robustness for cyber-physical systems. IEEE Trans. Autom. Control 2014, 59, 3151–3163. [Google Scholar] [CrossRef]
- Rajhans, A.; Bhave, A.; Ruchkin, I.; Krogh, B.H.; Garlan, D.; Platzer, A.; Schmerl, B. Supporting heterogeneity in cyber-physical systems architectures. IEEE Trans. Autom. Control 2014, 59, 3178–3193. [Google Scholar] [CrossRef]
- Wassenberg, J.; Middelmann, W.; Sanders, P. An efficient parallel algorithm for graph-based image segmentation. Comput. Anal. Images Patterns Proc. 2009, 5702, 1003–1010. [Google Scholar]
- Yap, F.G.H.; Yen, H.H. A survey on sensor coverage and visual data capturing/processing/transmission in wireless visual sensor networks. Sensors 2014, 14, 3506–3527. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, S.-W.; Wu, J.-H.; Lin, F.-P.; Hsu, C.-H. Visual Sensing for Urban Flood Monitoring. Sensors 2015, 15, 20006-20029. https://doi.org/10.3390/s150820006
Lo S-W, Wu J-H, Lin F-P, Hsu C-H. Visual Sensing for Urban Flood Monitoring. Sensors. 2015; 15(8):20006-20029. https://doi.org/10.3390/s150820006
Chicago/Turabian StyleLo, Shi-Wei, Jyh-Horng Wu, Fang-Pang Lin, and Ching-Han Hsu. 2015. "Visual Sensing for Urban Flood Monitoring" Sensors 15, no. 8: 20006-20029. https://doi.org/10.3390/s150820006
APA StyleLo, S.-W., Wu, J.-H., Lin, F.-P., & Hsu, C.-H. (2015). Visual Sensing for Urban Flood Monitoring. Sensors, 15(8), 20006-20029. https://doi.org/10.3390/s150820006