New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images
Abstract
:1. Introduction
2. Relative Works
2.1. Wearable Sensor-Based Methods
2.2. Ambient Sensor-Based Methods
2.3. Computer Vision-Based Methods
3. The Proposed Method
3.1. Foreground and Centroid Extraction
3.2. Head Position Extraction and Head Tracking
3.3. Floor Plane Extraction
3.4. Fall Detection
4. Experimental Results and Discussion
Fall Direction | Time for Total Frames (s) | Time for per Frame (ms) | Frame Number |
---|---|---|---|
anterior | 3.7241 | 22.8472 | 163 |
posterior | 5.4960 | 22.3415 | 246 |
left | 4.1075 | 23.0758 | 178 |
right | 3.5418 | 23.9311 | 148 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nihseniorheatlth: About Falls. Available online: http://nihseniorhealth.gov/falls/aboutfalls/01.html (accessed on 31 January 2015).
- Elizabeth, H. The Latest in Falls and Fall Prevention. Available online: http://www.cdc.gov/HomeandRecreational Safety/Falls/fallcost.html (accessed on 25 July 2015).
- Delahoz, Y.S.; Labrador, M.A. Survey on fall detection and fall prevention using wearable and external sensors. Sensors 2014, 14, 19806–19842. [Google Scholar] [CrossRef] [PubMed]
- Nashwa, E.B.; Tan, Q.; Pivot, F.C.; Anthony, L. Fall detection and prevention for the elderly: A review of trends and challenges. Int. J. Smart Sens. Intell. Syst. 2013, 6, 1230–1266. [Google Scholar]
- Feng, W.; Liu, R.; Zhu, M. Fall detection for elderly person care in a vision-based home surveillance environment using a monocular camera. Signal Image Video Process. 2014, 8, 1129–1138. [Google Scholar] [CrossRef]
- Liao, Y.T.; Huang, C.-L.; Hsu, S.-C. Slip and fall event detection using Bayesian Belief Network. Pattern Recognit. 2012, 45, 24–32. [Google Scholar] [CrossRef]
- Wu, G.; Xue, S. Portable preimpact fall detector with inertial sensors. IEEE Trans. Neural Syst. Rehabilit. Eng. 2008, 16, 178–183. [Google Scholar]
- Wang, C.-C.; Chiang, C.-Y.; Lin, P.-Y.; Chou, Y.-C.; Kuo, I.-T.; Huang, C.-N.; Chan, C.-T. Development of a fall detecting system for the elderly residents. In Proceedings of the 2nd IEEE International Conference on Bioinformatics and Biomedical Engineering (iCBBE2008), Shanghai, China, 16–18 May 2008; pp. 1359–1362.
- Ozdemir, A.T.; Barshan, B. Detecting falls with wearable sensors using machine learning techniques. Sensors 2014, 14, 10691–10708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mubashir, M.; Shao, L.; Seed, L. A survey on fall detection: Principles and approaches. Neurocomputing 2013, 100, 144–152. [Google Scholar] [CrossRef]
- Rimminen, H.; Lindström, J.; Linnavuo, M.; Sepponen, R. Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1475–1476. [Google Scholar] [CrossRef] [PubMed]
- Zigel, Y.; Litvak, D.; Gannot, I. A method for automatic fall detection of elderly people using floor vibrations and sound-Proof of concept on human mimicking doll falls. IEEE Trans. Biomed. Eng. 2009, 56, 2858–2867. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Yu, Y.; Rhuma, A.; Naqvi, S.M.; Wang, L.; Chambers, J.A. An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment. IEEE J. Biomed. Health Inf. 2013, 17, 1002–1014. [Google Scholar]
- Anderson, D.; Keller, J.M.; Skubic, M.; Chen, X.; He, Z. Recognizing falls from silhouettes. In Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York City, USA, 30 August–3 September 2006; pp. 6388–6391.
- Planinc, R.; Kampel, M. Introducing the use of depth data for fall detection. Pers. Ubiquitous Comput. 2013, 17, 1063–1072. [Google Scholar] [CrossRef]
- Ozcan, K.; Mahabalagiri, A.K.; Casares, M.; Velipasalar, S. Automatic Fall Detection and Activity Classification by a Wearable Embedded Smart Camera. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 125–136. [Google Scholar] [CrossRef]
- Gasparrini, S.; Cippitelli, E.; Spinsante, S.; Gambi, E. A depth-based fall detection system using a Kinect sensor. Sensors 2014, 14, 2756–2775. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.P.; Hou, J.; Chau, L.P.; Magnenat-Thalmann, N. Fall detection based on body part tracking using a depth camera. IEEE J. Biomed. Health Inf. 2015, 19, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Mastorakis, G.; Makris, D. Fall detection system using Kinect’s infrared sensor. J. Real-Time Image Process. 2012, 9, 635–646. [Google Scholar] [CrossRef]
- Rougier, C.; Meunier, J.; St-Arnaud, A.; Rousseau, J. 3D head tracking for fall detection using a single calibrated camera. Image Vis. Comput. 2013, 31, 246–254. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.; Liu, Q.; Zhang, D.; Yang, M.-H. Fast visual tracking via dense spatio-temporal context learning. In Computer Vision–ECCV 2014; Springer: Zurich, Switzerland, 2014; Volume 8693, pp. 127–141. [Google Scholar]
- Yang, S.-W.; Lin, S.-K. Fall detection for multiple pedestrians using depth image processing technique. Comput. Methods Programs Biomed. 2014, 114, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Stone, E.E.; Skubic, M. Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Health Inf. 2015, 19, 290–301. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Ren, Y.; Hu, H.; Tian, B. New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images. Sensors 2015, 15, 23004-23019. https://doi.org/10.3390/s150923004
Yang L, Ren Y, Hu H, Tian B. New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images. Sensors. 2015; 15(9):23004-23019. https://doi.org/10.3390/s150923004
Chicago/Turabian StyleYang, Lei, Yanyun Ren, Huosheng Hu, and Bo Tian. 2015. "New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images" Sensors 15, no. 9: 23004-23019. https://doi.org/10.3390/s150923004
APA StyleYang, L., Ren, Y., Hu, H., & Tian, B. (2015). New Fast Fall Detection Method Based on Spatio-Temporal Context Tracking of Head by Using Depth Images. Sensors, 15(9), 23004-23019. https://doi.org/10.3390/s150923004