Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals
Abstract
:1. Introduction
2. Methods
2.1. Dependence of S2 upon Blood Pressure
2.2. Data Acquisition
2.3. Identification of S2
2.4. Regression Using Support Vector Machine
2.5. Statistical Analysis
3. Results
Parameter | Maximum | Median | Minimum | Mean |
---|---|---|---|---|
CCSBP | 0.981 | 0.707 | 0.386 | 0.707 |
CCDBP | 0.923 | 0.716 | 0.358 | 0.712 |
CCMBP | 0.996 | 0.742 | 0.567 | 0.748 |
MAESBP(mmHg) | 7.472 | 3.846 | 1.050 | 4.339 |
MAEDBP(mmHg) | 5.472 | 3.040 | 1.767 | 3.171 |
MAEMBP(mmHg) | 6.101 | 3.459 | 0.585 | 3.480 |
MESBP(mmHg) | 1.231 | −0.108 | −2.494 | −0.204 |
MEDBP(mmHg) | 0.496 | −0.174 | −1.190 | −0.274 |
MEMBP(mmHg) | 0.463 | −0.247 | −1.490 | −0.357 |
SDSBP(mmHg) | 10.708 | 5.452 | 2.815 | 6.121 |
SDDBP(mmHg) | 7.488 | 4.225 | 2.878 | 4.471 |
SDMBP(mmHg) | 8.383 | 4.819 | 1.014 | 4.961 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- WHO NCD Mortality and Morbidity. Available online: http://www.who.int/gho/ncd/mortality_morbidity/en/ (accessed on 7 September 2015).
- Boulos, M.N.K.; Wheeler, S.; Tavares, C.; Jones, R. How smartphones are changing the face of mobile and participatory healthcare: An overview, with example from eCAALYX. Biomed. Eng. Online 2011, 10. [Google Scholar] [CrossRef] [PubMed]
- Jonathan, E.; Leahy, M. Investigating a smartphone imaging unit for photoplethysmography. Physiol. Meas. 2010, 31, N79–N83. [Google Scholar] [CrossRef] [PubMed]
- Jonathan, E.; Leahy, M.J. Cellular phone-based photoplethysmographic imaging. J. Biophotonics 2011, 4, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Scully, C.G.; Lee, J.; Meyer, J.; Gorbach, A.M.; Granquist-Fraser, D.; Mendelson, Y.; Chon, K.H. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans. Biomed. Eng. 2012, 59, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Gregoski, M.J.; Mueller, M.; Vertegel, A.; Shaporev, A.; Jackson, B.B.; Frenzel, R.M.; Sprehn, S.M.; Treiber, F.A. Development and validation of a smartphone heart rate acquisition application for health promotion and wellness telehealth applications. Int. J. Telemed. Appl. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, K.; Yamakoshi, T. iPhysioMeter: A new approach for measuring heart rate and normalized pulse volume using only a smartphone. Behav. Res. Methods 2013, 45, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Chen, G.; Alexander, B.; Cannesson, M. Non-invasive continuous blood pressure monitoring: A review of current applications. Front. Med. 2013, 7, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Kurylyak, Y.; Barbe, K.; Lamonaca, F.; Grimaldi, D.; Van Moer, W. Photoplethysmogram-Based Blood Pressure Evaluation Using Kalman Filtering and Neural Networks. In Proceedings of the 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Gatineau, QC, Canada, 4–5 May 2013; pp. 170–174.
- Lamonaca, F.; Barbe, K.; Kurylyak, Y.; Grimaldi, D.; Van Moer, W.; Furfaro, A.; Spagnuolo, V. Application of the Artificial Neural Network for blood pressure evaluation with smartphones. In Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), Berlin, Germany, 12–14 September 2013; pp. 408–412.
- Chandrasekaran, V.; Dantu, R.; Jonnada, S.; Thiyagaraja, S.; Subbu, K.P. Cuffless differential blood pressure estimation using smart phones. IEEE Trans. Biomed. Eng. 2013, 60, 1080–1089. [Google Scholar] [CrossRef] [PubMed]
- Bartels, A.; Harder, D. Noninvasive determination of systolic blood-pressure by heart-sound pattern-analysis. Clin. Phys. Physiol. Meas. 1992, 13, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Durand, L.G.; Pibarot, P. Digital signal processing of the phonocardiogram: Review of the most recent advancements. Crit. Rev. Biomed. Eng. 1995, 23, 163–219. [Google Scholar] [CrossRef] [PubMed]
- Rangayyan, R.M.; Lehner, R.J. Phonocardiogram signal analysis: a review. Crit. Rev. Biomed. Eng. 1987, 15, 211–236. [Google Scholar] [PubMed]
- Tanigawa, N.; Smith, D.; Craige, E. The influence of left-ventricular relaxation in determination of the intensity of the aortic component of the 2nd heart-sound. Jpn. Circ. J. Eng. Edit. 1991, 55, 737–743. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Zhang, Y.-T. Model-based analysis of effects of systolic blood pressure on frequency characteristics of the second heart sound. In Proceedings of theIEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2888–2891.
- Bombardini, T.; Gemignani, V.; Bianchini, E.; Venneri, L.; Petersen, C.; Pasanisi, E.; Pratali, L.; Pianelli, M.; Faita, F.; Giannoni, M.; et al. Arterial pressure changes monitoring with a new precordial noninvasive sensor. Cardiovasc. Ultrasound 2008, 6. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Lukkarinen, S.; Hartimo, I. Heart sound segmentation algorithm based on heart sound envelogram. In Proceedings of the Computers in Cardiology 1997, Lund, Sweden, 7–9 September 1997; pp. 105–108.
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. Acm. Trans. Intell. Syst. Technol. 2011, 2. [Google Scholar] [CrossRef]
- Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46, 131–159. [Google Scholar] [CrossRef]
- Maglogiannis, I.; Loukis, E.; Zafiropoulos, E.; Stasis, A. Support vectors machine-based identification of heart valve diseases using heart sounds. Comput. Methods Progr. Biomed. 2009, 95, 47–61. [Google Scholar] [CrossRef] [PubMed]
- American national standard for electronic or automated sphygmomanometers. American National Standard ANSI/AAMI SP10; 1992. [Google Scholar]
- Liu, Q.; Poon, C.C.Y.; Zhang, Y.T. Time-frequency analysis of variabilities of heart rate, systolic blood pressure and pulse transit time before and after exercise using the recursive autoregressive model. Biomed. Signal Process. Control 2011, 6, 364–369. [Google Scholar] [CrossRef]
- Liu, Y.; Poon, C.C.Y.; Zhang, Y.T. A hydrostatic calibration method for the design of wearable PAT-based blood pressure monitoring devices. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1308–1310.
- Poon, C.C.Y.; Zhang, Y.T. Using the changes in hydrostatic pressure and pulse transit time to measure arterial blood pressure. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 2336–2337.
- Chen, Y.; Wen, C.; Tao, G.; Bi, M.; Li, G. Continuous and noninvasive blood pressure measurement: A novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Ann. Biomed. Eng. 2009, 37, 2222–2233. [Google Scholar] [CrossRef] [PubMed]
- Ester, S.; Femmer, U.; Most, E. Heart-sound analysis utilizing adaptive filter technique and neural networks. Tech. Mess. 1995, 62, 107–112. [Google Scholar]
- Choi, S.; Jiang, Z. Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst. Appl. 2008, 34, 1056–1069. [Google Scholar] [CrossRef]
- Schmidt, S.E.; Holst-Hansen, C.; Graff, C.; Toft, E.; Struijk, J.J. Segmentation of heart sound recordings by a duration-dependent hidden Markov model. Physiol. Meas. 2010, 31, 513–529. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, R.-C.; Yan, W.-R.; Zhang, N.-L.; Lin, W.-H.; Zhou, X.-L.; Zhang, Y.-T. Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals. Sensors 2015, 15, 23653-23666. https://doi.org/10.3390/s150923653
Peng R-C, Yan W-R, Zhang N-L, Lin W-H, Zhou X-L, Zhang Y-T. Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals. Sensors. 2015; 15(9):23653-23666. https://doi.org/10.3390/s150923653
Chicago/Turabian StylePeng, Rong-Chao, Wen-Rong Yan, Ning-Ling Zhang, Wan-Hua Lin, Xiao-Lin Zhou, and Yuan-Ting Zhang. 2015. "Cuffless and Continuous Blood Pressure Estimation from the Heart Sound Signals" Sensors 15, no. 9: 23653-23666. https://doi.org/10.3390/s150923653