A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure
Abstract
:1. Introduction
2. Theory of AGC Amplifier
2.1. Beer-Lambert Law
2.2. Fiber Optic Gas Sensor System based on AGC Amplifier Structure
2.3. AGC Amplifier
3. Experimental Apparatus and Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraatb, A.; Tuantranontb, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuator B Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Hawe, E.; Fitzpatrick, C.; Chambers, P.; Dooly, G.; Lewis, E. Hazardous gas detection using an integrating sphere as a multipass gas absorption cell. Sens. Actuator A Phys. 2008, 141, 414–421. [Google Scholar] [CrossRef]
- Tan, Q.; Pei, X.; Zhu, S.; Dong, S.; Liu, J.; Xue, C.; Liang, T.; Zhang, W.; Xiong, J. Development of an optical gas leak sensor for detecting ethylene, dimethyl ether and methane. Sensors 2013, 13, 4157–4169. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, I.A. Porous silicon structures as optical gas sensors. Sensors 2015, 15, 19968–19991. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.K.; Lim, J.A.; Kim, S.; Song, Y.W. Ultra-highly sensitive optical gas sensors based on chemomechanical polymer-incorporated fiber interferometer. Opt. Express 2013, 21, 2018–2023. [Google Scholar] [CrossRef] [PubMed]
- Pickrell, G.; Peng, W.; Wang, A. Random-hole optical fiber evanescent-wave gas sensing. Opt. Lett. 2004, 29, 1476–1478. [Google Scholar] [CrossRef] [PubMed]
- Miehael, E.W.; Suhong, K.; Scott, T.S. In-situ combustion measurements of CO2 by use of a distributed feedbaek diode laser sensor near 2.0 μm. Appl. Opt. 2001, 40, 821–828. [Google Scholar]
- Hunsmann, S.; Wunderle, K.; Wagner, S.; Rascher, U.; Schurr, U.; Ebert, V. Absolute, high resolution water transpiration rat measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm. Appl. Phys. B 2008, 92, 393–401. [Google Scholar] [CrossRef]
- Linnerud, I.; Kaspersen, P.; Jæger, T. Gas monitoring in the process industry using diode laser spectroscopy. Appl. Phys. B 1998, 67, 297–305. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Q.; Zhang, Y.; Song, F.; Chen, K.; Chou, G.; Chang, J.; Wang, P.; Kong, D.; Wang, Z.; et al. Water vapor detection system based on scanning spectra. Photonic Sens. 2012, 2, 71–76. [Google Scholar] [CrossRef]
- Duffin, K.; McGettrick, A.J.; Johnstone, W.; Stewart, G.; Moodie, D.G. Tunable diode laser spectroscopy with wavelength modulation: A calibration-free approach to the recovery of absolute gas absorption line-shapes. IEEE J. Lightw. Technol. 2007, 25, 3114–3125. [Google Scholar] [CrossRef]
- Durry, G.; Megie, G. In situ measurements of H2O from a stratospheric balloon by diode laser direct-differential absorption spectroscopy at 1.39 microm. Appl. Opt. 2000, 39, 5601–5608. [Google Scholar] [CrossRef] [PubMed]
- Berrou, A.; Raybaut, M.; Godard, A.; Lefebvre, M. High-resolution photoacoustic and direct absorption spectroscopy of main greenhouse gases by use of a pulsed entangled cavity doubly resonant opo. Appl. Phys. B 2010, 98, 217–230. [Google Scholar] [CrossRef]
- Zhu, C.G.; Chang, J.; Wang, P.P.; Wang, Q.; Wei, W.; Liu, Z.; Zhang, S.S. Single-beam water vapor detection system with automatic photoelectric conversion gain control. Opt. Commun. 2014, 331, 45–52. [Google Scholar] [CrossRef]
- Zhu, C.G.; Chang, J.; Wang, P.P.; Sun, B.N.; Wang, Q.; Wei, W.; Liu, X.Z.; Zhang, S.S. Improvement of measurement accuracy of infrared moisture meter by considering the impact of moisture inside optical components. IEEE Sens. J. 2014, 14, 920–925. [Google Scholar] [CrossRef]
- Ono, S.; Wang, D.T.; Gruen, D.S.; Lollar, B.S.; Zahniser, M.S.; Mcmanus, B.J.; Nelson, D.D. Measurement of a doubly substituted methane isotopologue, 13CH3D, by tunable infrared laser direct absorption spectroscopy. Anal. Chem. 2014, 86, 6487–6494. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.G.; Chang, J.; Wang, P.P.; Wang, W.J.; Wang, Q.; Liu, Y.N.; Lv, G.; Liu, X.Z.; Wei, W.; Wang, F.P.; et al. Reliability analysis and comparison of demodulation methods for dual-beam wavelength-modulation spectroscopy water vapor detection. Appl. Opt. 2013, 52, 4171–4178. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Farrell, G.; Freir, T. Theoretical and experimental investigations of macro-bend losses for standard single mode fibers. Opt. Express 2005, 13, 4476–4484. [Google Scholar] [CrossRef]
- Arroyo, M.P.; Hanson, R.K. Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser. Appl. Opt. 1993, 32, 6104–6116. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Wang, R.; Tao, X.; Wang, G.; Wang, P. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure. Sensors 2016, 16, 1187. https://doi.org/10.3390/s16081187
Zhu C, Wang R, Tao X, Wang G, Wang P. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure. Sensors. 2016; 16(8):1187. https://doi.org/10.3390/s16081187
Chicago/Turabian StyleZhu, Cunguang, Rende Wang, Xuechen Tao, Guangwei Wang, and Pengpeng Wang. 2016. "A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure" Sensors 16, no. 8: 1187. https://doi.org/10.3390/s16081187