A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor
Abstract
:1. Introduction
2. Low Power Digital Accumulation Technique
2.1. Principle of the Low Power Digital Accumulation Technique
2.2. Analysis and Optimization of the Coarse Quantization Bit Numbers and Coarse Quantization Times
2.3. MATLAB Behavioral Simulation
3. Circuit Implementation and Simulation Results
3.1. Circuit Implementation
3.1.1. Pixel and DPGA
3.1.2. SAR ADC
3.1.3. Digital Accumulator
3.1.4. Noise Analysis of the Low Power Readout Circuit
3.2. Linearity Simulation Results and Power Consumption Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Farrier, M.G.; Dyck, R.H. A large area TDI image sensor for low light level imaging. IEEE J. Solid-State Circuits 1980, 15, 753–758. [Google Scholar] [CrossRef]
- Barbe, D.F. Time delay and integration image sensors. In Solid State Imaging; Jespers, P.G., van de Wiele, F., White, M.H., Eds.; Noordhoff: Leyden, MA, USA, 1976; pp. 659–671. [Google Scholar]
- Wong, H.S.; Yao, Y.L.; Schlig, E.S. TDI charge-coupled devices: Design and applications. IBM J. Res. Dev. 1992, 36, 83–106. [Google Scholar] [CrossRef]
- Gamal, A.E.; Eltoukhy, H. CMOS image sensors. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Mayer, F.; Bugnet, H.; Pesenti, S.; Guicherd, C.; Gili, B.; Bell, R.; Monte, B.D.; Ligozat, T. First Measurements of True Charge Transfer TDI (Time Delay Integration) Using a standard CMOS technology. In Proceedings of the International Conference on Space Optics, Ajaccio, France, 9–12 October 2012.
- Ercan, A.; Haspeslagh, L.; Munck, K.D.; Minoglou, K.; Lauwers, A.; Moor, P.D. Prototype TDI sensors in embedded CCD in CMOS technology. In Proceedings of the International Image Sensor Workshop, Snowbird Resort, UT, USA, 12–16 June 2013.
- Moor, P.D.; Robbelein, J.; Haspeslagh, L.; Boulenc, P.; Ercan, A.; Minoglou, K.; Lauwers, A.; Munk, K.D.; Rosmeulen, M. Enhanced time delay integration imaging using embedded CCD in CMOS technology. In Processings of the 2014 IEEE Electron Devices Meeting (IEDM), San Franciscom, CA, USA, 15–17 December 2014.
- Mayer, F.; Pesenti, S.; Barbier, F.; Bugnet, H.; Endicott, F.; Ligozat, T. CMOS Charge Transfer TDI with Front Side Enhanced Quantum Efficiency. In Proceedings of the International Image Sensor Workshop, Vaals, The Netherlands, 8–11 June 2015.
- Nie, K.; Yao, S.; Xu, J.; Gao, J. Thirty two-stage CMOS TDI image sensor with on-chip analog accumulator. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2014, 22, 951–956. [Google Scholar] [CrossRef]
- Nie, K.; Yao, S.; Xu, J.; Gao, J.; Xia, Y. A 128-stage analog accumulator for CMOS TDI image sensor. IEEE Trans. Circuits Syst. I. 2014, 61, 1952–1961. [Google Scholar] [CrossRef]
- Xia, Y.; Nie, K.; Xu, J.; Yao, S. A two-step analog accumulator for CMOS TDI image sensor with temporal undersampling exposure method. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 34, 1104–1117. [Google Scholar] [CrossRef]
- Lepage, G.; Dantès, D.; Diels, W. CMOS long linear array for space application. In Proceedings of the International Society for Optical Engineering, San Jose, CA, USA, 17–19 January 2014.
- Materne, A. CNES developments of key detection technologies to prepare next generation focal planes for high resolution Earth observation. In Proceedings of the International Society for Optical Engineering, Amsterdam, The Netherlands, 22–25 September 2014.
- Nie, K.; Xu, J.; Gao, Z. A 128-Stage CMOS TDI image sensor with on-chip digital accumulator. IEEE Sens. J. 2016, 16, 1319–1324. [Google Scholar] [CrossRef]
- Banu, M.; Khoury, J.M.; Tsividis, Y. Fully differential operational amplifiers with accurate output balancing. IEEE J. Solid-State Circuits 1988, 23, 71410–1414. [Google Scholar] [CrossRef]
- Yavari, M.; Shoaei, O.; Svelto, F. Hybrid cascode compensation for two-stage CMOS operational amplifiers. In Proceedings of the IEEE International Symposium on Circuits and Systems, Kobe, Japan, 23–26 May 2005.
- Chang, A.H.; Lee, H.S.; Boning, D. A 12 b 50 Ms/s 2.1 mW SAR ADC with redundancy and digital background calibration. In Proceedings of thr IEEE 39th European Solid State Circuits Conference, Bucharest, Romanian, 16–20 September 2013.
- Doernberg, J.; Gray, P.R.; Hodges, D.A. A 10-bit 5-Msample/s CMOS two-step flash ADC. IEEE J. Solid-State Circuits 1989, 24, 241–249. [Google Scholar] [CrossRef]
- Lyu, T.; Yao, S.; Nie, K.; Xu, J. A 12-Bit High-Speed Column-Parallel Two-Step Single-Slope Analog-to-Digital Converter (ADC) for CMOS Image Sensors. Sensors 2014, 13, 21603–21625. [Google Scholar] [CrossRef] [PubMed]
- Lepage, G.; Bogaerts, J.; Meynants, G. Time-delay-integration architectures in CMOS image sensor. IEEE Trans. Electron Devices 2009, 56, 2525–2533. [Google Scholar] [CrossRef]
- Schreier, R.; Silva, J.; Steensgaard, J.; Temes, G.C. Design-oriented estimation of thermal noise in switch-capacitor circuits. IEEE Trans. Circuits Syst. I. 2005, 52, 2358–2368. [Google Scholar] [CrossRef]
- Razavi, B. Design of Analog CMOS Integrated Circuits, 1st ed.; McGraw-Hill: New York, NY, USA, 2000; pp. 471–477. [Google Scholar]
- Theuwissen, A. How to Measure Non-Linearity. Available online: http://harvestimaging.com/blog/?p=1125 (accessed on 31 October 2014).
Corner | Temperature | Supply Voltage of OPA | Output Voltage Swing of OPA | Unity Gain-Bandwidth | Gain | Phase Margin |
---|---|---|---|---|---|---|
tt | −40C–80C | 2.97 V –3.63 V | 0.85 V–2.45 V | 135 MHz–167 MHz | 105 dB–117 dB | 68–69 |
ss | −40C–80C | 2.97 V –3.63 V | 0.85 V–2.45 V | 118 MHz–161 MHz | 107 dB–117 dB | 67–69 |
ff | −40C–80C | 2.97 V–3.63 V | 0.85 V–2.45 V | 124 MHz–173 MHz | 97 dB–116 dB | 68–71 |
Parameter | This Work | [10] | [14] | |
---|---|---|---|---|
Low Power | Traditional | |||
Technology | 0.18 µm CMOS | 0.18 µm CMOS | 0.18 µm CMOS | 0.18 µm CMOS |
Array size | 1 (H)×20 (V) | 1 (H) ×16 (V) | 1024 (H)×128 (V) | 1024(H)×128 (V) |
Maximum stage | 16 | 16 | 128 | 128 |
Maximum line rate | 138888 lines/s | 122549 lines/s | 3875 lines/s | 3875 lines/s |
Total power consumption | 8.991 mW | 9.065 mW | 500 mW | 290 mW |
Average power consumption of slice | J/line | J/line | J/line | J/line |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Nie, K.; Xu, J.; Gao, J. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor. Sensors 2016, 16, 1572. https://doi.org/10.3390/s16101572
Yu C, Nie K, Xu J, Gao J. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor. Sensors. 2016; 16(10):1572. https://doi.org/10.3390/s16101572
Chicago/Turabian StyleYu, Changwei, Kaiming Nie, Jiangtao Xu, and Jing Gao. 2016. "A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor" Sensors 16, no. 10: 1572. https://doi.org/10.3390/s16101572