Automatic Extraction of Tunnel Lining Cross-Sections from Terrestrial Laser Scanning Point Clouds
Abstract
:1. Introduction
2. Methods
2.1. Estimation of the Tunnel Boundary Lines in the X-Y Plane
2.2. Extraction of Bare-Lining Cross-Sections
2.2.1. Extraction of Cross-Sections
2.2.2. A Filtering Algorithm for Non-Lining Points Removal
3. Experimental Result and Discussion
3.1. Data Acquisition
3.2. Detection of Tunnel Boundary Points in the X-Y Plane
3.3. Extraction of Cross-Sections
3.3.1. Extracting Results
3.3.2. Assessment of Extracting Accuracy
3.4. Removing Non-Lining Points Using the Proposed Filter
3.4.1. Parameter Selection and Performance Assessment
3.4.2. The Limitation of the Proposed Filter
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jung, J.; Hong, S.; Yoon, S.; Kim, J.; Heo, J. Automated 3D wireframe modeling of indoor structures from point clouds using constrained least-squares adjustment for as-built BIM. J. Comput. Civil. Engin. 2015, 30. [Google Scholar] [CrossRef]
- Hinks, T.; Carr, H.; Truong-Hong, L.; Laefer, D.F. Point cloud data conversion into solid models via point-based voxelization. J. Surv. Engin. 2012, 139, 72–83. [Google Scholar] [CrossRef]
- Truong-Hong, L.; Laefer, D.F.; Hinks, T.; Carr, H. Combining an angle criterion with voxelization and the flying voxel method in reconstructing building models from LIDAR data. Comput. Aided Civil. Infrastruct. Engin. 2013, 28, 112–129. [Google Scholar] [CrossRef]
- Wawrzyniec, T.F.; McFadden, L.D.; Ellwein, A.; Meyer, G.; Scuderi, L.; McAuliffe, J.; Fawcett, P. Chronotopographic analysis directly from point-cloud data: A method for detecting small, seasonal hill slope change, Black Mesa Escarpment, NE Arizona. Geosphere 2007, 3, 550–567. [Google Scholar] [CrossRef]
- Teza, G.; Pesci, A.; Genevois, R.; Galgaro, A. Characterization of landslide ground surface kinematics from terrestrial laser scanning and strain field computation. Geomorphology 2008, 97, 424–437. [Google Scholar] [CrossRef]
- Rosser, N.J.; Petley, D.N.; Lim, M.; Dunning, S.A.; Allison, R.J. Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Q. J. Eng. Geolog. Hydrogeol. 2005, 38, 363–375. [Google Scholar] [CrossRef]
- O’Neal, M.A.; Pizzuto, J.E. The rates and spatial patterns of annual riverbank erosion revealed through terrestrial laser-scanner surveys of the South River, Virginia. Earth Surf. Processes Landf. 2011, 36, 695–701. [Google Scholar] [CrossRef]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef]
- Yang, B.; Dai, W.; Dong, Z.; Liu, Y. Automatic forest mapping at individual tree levels from terrestrial laser scanning point clouds with a hierarchical minimum cut method. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Yang, X.; Strahler, A.H.; Schaaf, C.B.; Jupp, D.L.B.; Yao, T.; Zhao, F.; Wang, Z.; Culvenor, D.S.; Newnham, G.J.; Lovell, J.L.; et al. Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform LIDAR instrument (echidna®). Remote Sens. Environ. 2013, 135, 36–51. [Google Scholar] [CrossRef]
- Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting tree crowns from terrestrial and mobile lidar data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [Google Scholar] [CrossRef]
- Han, S.; Cho, H.; Kim, S.; Jung, J.; Heo, J. Automated and efficient method for extraction of tunnel cross sections using terrestrial laser scanned data. J. Comput. Civil. Engin. 2013, 27, 274–281. [Google Scholar] [CrossRef]
- Fekete, S.; Diederichs, M.; Lato, M. Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. Tunn. Undergr. Space Technol. 2010, 25, 614–628. [Google Scholar] [CrossRef]
- Van Gosliga, R.; Lindenbergh, R.; Pfeifer, N. Deformation analysis of a bored tunnel by means of terrestrial laser scanning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 167–172. [Google Scholar]
- Walton, G.; Delaloye, D.; Diederichs, M.S. Development of an elliptical fitting algorithm to improve change detection capabilities with applications for deformation monitoring in circular tunnels and shafts. Tunn. Undergr. Space Technol. 2014, 43, 336–349. [Google Scholar] [CrossRef]
- Nuttens, T.; Stal, C.; Backer, H.D.; Schotte, K.; Bogaert, P.V.; Wulf, A.D. Methodology for the ovalization monitoring of newly built circular train tunnels based on laser scanning: Liefkenshoek Rail Link (Belgium). Autom. Constr. 2014, 43, 1–9. [Google Scholar] [CrossRef]
- Kang, Z.; Zhang, L.; Lei, T.; Wang, B.; Chen, J. Continuous extraction of subway tunnel cross sections based on terrestrial point clouds. Remote Sens. 2014, 6, 857–879. [Google Scholar] [CrossRef]
- Yoon, J.S.; Sagong, M.; Lee, J.S.; Lee, K.S. Feature extraction of a concrete tunnel liner from 3D laser scanning data. NDT E Inter. 2009, 42, 97–105. [Google Scholar] [CrossRef]
- Wang, T.T.; Jaw, J.J.; Chang, Y.H.; Jeng, F.S. Application and validation of profile–image method for measuring deformation of tunnel wall. Tunn. Undergr. Space Technol. 2009, 24, 136–147. [Google Scholar] [CrossRef]
- Nuttens, T.; De Wulf, A.; Deruyter, G.; Stal, C.; De Backer, H.; Schotte, K. Application of laser scanning for deformation measurements: a comparison between different types of scanning instruments. In Proceedings of the FIG Working Week, Rome, Italy, 6–10 May 2012.
- Baltsavias, E.P. Airborne laser scanning: basic relations and formulas. ISPRS J. Photogramm. Remote Sens. 1999, 54, 199–214. [Google Scholar] [CrossRef]
- Yang, B.; Fang, L.; Li, Q.; Li, J. Automated extraction of road markings from mobile LIDAR point clouds. Photogramm. Engin. Remote Sens. 2012, 78, 331–338. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Yu, Y.; Wang, C.; Chapman, M.; Yang, B. Using mobile laser scanning data for automated extraction of road markings. ISPRS J. Photogramm. Remote Sens. 2014, 32, 125–137. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Yu, Y.; Chapman, M.; Wang, C. Automated road information extraction from mobile laser scanning data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 194–205. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Golub, G.H.; Loan, C.F.V. An analysis of the total least squares problem. Siam J. Numer. Anal. 1980, 17, 883–893. [Google Scholar] [CrossRef]
- Markovsky, I.; Huffel, S.V. Overview of total least-squares methods. Signal Process. 2007, 87, 2283–2302. [Google Scholar] [CrossRef]
- Rodrigues, O. Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de et. 1840, 5, 380–440. [Google Scholar]
- Yan, S.; Chan, K.L.; Krishnan, S.M. Ecg signal conditioning by morphological filtering. Comput. Biol. Med. 2002, 32, 465–479. [Google Scholar]
- Dufour, A.; Tankyevych, O.; Naegel, B.; Talbot, H.; Ronse, C.; Baruthio, J.; Dokladal, P.; Passat, N. Filtering and segmentation of 3D angiographic data: advances based on mathematical morphology. Med.Image Anal. 2013, 17, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Vosselman, G. Slope based filtering of laser altimetry data. Inter. Arch. Photogramm. Remote Sens. 2000, 33, 935–942. [Google Scholar]
Categories | Specifications |
---|---|
Instrument | Faro X130 |
Scan Angular Resolution | 0.036° |
Beam divergence | 0.19 mrad |
Range | 0.6 m~130 m |
Ranging error | ± 2 mm |
Number of points | 1371 million |
ID | (m) | (m) | |||||
---|---|---|---|---|---|---|---|
Proposed Method | Han’s Method | Discrepancy | Proposed Method | Han’s Method | Discrepancy | ||
1 | 11.6346 | 11.6339 | 0.0007 | 8.7365 | 8.7386 | −0.0021 | |
2 | 11.6419 | 11.6432 | −0.0013 | 8.7377 | 8.7395 | −0.0018 | |
3 | 11.6332 | 11.6340 | −0.0008 | 8.7378 | 8.7398 | −0.0020 | |
4 | 11.6188 | 11.6184 | 0.0004 | 8.7394 | 8.7409 | −0.0015 | |
5 | 11.6211 | 11.6209 | 0.0002 | 8.7416 | 8.7429 | −0.0013 | |
6 | 11.6238 | 11.6247 | −0.0009 | 8.7319 | 8.7337 | −0.0018 | |
7 | 11.6267 | 11.6276 | −0.0009 | 8.7313 | 8.7328 | −0.0015 | |
8 | 11.6256 | 11.6261 | −0.0005 | 8.7322 | 8.7332 | −0.0010 | |
9 | 11.6283 | 11.6278 | 0.0005 | 8.7311 | 8.7338 | −0.0027 | |
10 | 11.6295 | 11.6305 | −0.0010 | 8.7315 | 8.7353 | −0.0038 | |
Average | −0.0004 | −0.0020 | |||||
RMSE | 0.0008 | 0.0021 |
ID | Number of Points | % Error ( = 55°) | % Error ( = 110°) | % Error ( = 165°) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Lining | Non-Lining | Type I | Type II | Type I | Type II | Type I | Type II | ||||
1 | 5085 | 864 | 0.000 | 3.588 | 0.059 | 3.241 | 0.275 | 0.116 | |||
2 | 4274 | 30 | 0.000 | 10.000 | 0.000 | 6.667 | 0.023 | 0.000 | |||
3 | 3953 | 17 | 0.101 | 5.882 | 0.228 | 5.882 | 1.644 | 0.000 | |||
4 | 4225 | 16 | 0.047 | 18.750 | 0.095 | 6.250 | 0.710 | 0.000 | |||
5 | 3948 | 21 | 0.101 | 4.762 | 0.304 | 0.000 | 1.773 | 0.000 | |||
6 | 3825 | 15 | 0.026 | 6.667 | 0.052 | 0.000 | 0.444 | 0.000 | |||
7 | 3421 | 25 | 0.000 | 8.000 | 0.000 | 4.000 | 0.000 | 0.000 | |||
8 | 3110 | 14 | 0.000 | 7.143 | 0.000 | 0.000 | 0.289 | 0.000 | |||
9 | 3188 | 17 | 0.063 | 5.882 | 0.125 | 5.882 | 0.878 | 0.000 | |||
10 | 3008 | 14 | 0.000 | 7.143 | 0.000 | 0.000 | 0.000 | 0.000 | |||
Average | 0.034 | 7.782 | 0.086 | 3.192 | 0.604 | 0.012 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-J.; Qiu, W.; Lei, J. Automatic Extraction of Tunnel Lining Cross-Sections from Terrestrial Laser Scanning Point Clouds. Sensors 2016, 16, 1648. https://doi.org/10.3390/s16101648
Cheng Y-J, Qiu W, Lei J. Automatic Extraction of Tunnel Lining Cross-Sections from Terrestrial Laser Scanning Point Clouds. Sensors. 2016; 16(10):1648. https://doi.org/10.3390/s16101648
Chicago/Turabian StyleCheng, Yun-Jian, Wenge Qiu, and Jin Lei. 2016. "Automatic Extraction of Tunnel Lining Cross-Sections from Terrestrial Laser Scanning Point Clouds" Sensors 16, no. 10: 1648. https://doi.org/10.3390/s16101648