Nanomaterials for Electrochemical Immunosensing
Abstract
:1. Introduction
2. Electrochemical Immunosensors with Different Signals
2.1. Amperometric Immunosensors
2.2. Potentiometric Immunosensors
2.3. Impedance Immunosensor
2.4. Conductometric Immunosensors
2.5. Capacitive Immunosensors
3. Electrochemical Immunosensors Based on Various Nanomaterials
3.1. Metal Nanoparticles
3.1.1. Au and Ag Nanomaterials
3.1.2. Other Metal Nanomaterials
3.2. Carbon-Based Nanomaterials
3.2.1. Carbon Nanotubes (CNTs)
3.2.2. Graphene and Graphene Oxide
3.2.3. Other Carbon Materials
3.3. Semiconductor Nanomaterials
3.3.1. SiO2 Nanomaterials
3.3.2. Quantum Dots
3.4. Other Nanomaterials
4. Conclusions
- (1)
- As biomarkers. More electrochemical markers from novel nanofunctional materials will continue to emerge, which will further improve the sensitivity of immunoassays.
- (2)
- As media for different technologies. More new functional nanomaterials with different characteristics will be investigated to meet the mutual promotion and common development requirements of different technologies.
- (3)
- The establishment of nanomaterials for electrochemical online and real-time immune-analysis in the living body remains challenging. Thus, the development of new bio-sensing chips based on nanomaterials is expected.
Acknowledgments
Conflicts of Interest
References
- Akifumi, K.; Takashi, M. Biosensor. In Biomaterials Nanoarchitectonics, 1st ed.; Mitsuhiro, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 157–176. [Google Scholar]
- Pisoschi, A.M. ChemInform abstract: Biosensors as bio-based materials in chemical analysis: A review. Cheminform 2014, 45, 19–38. [Google Scholar] [CrossRef]
- Gizeli, E.; Lowe, C.R. Immunosensors. Curr. Opin. Biotechnol. 1996, 7, 66–71. [Google Scholar] [CrossRef]
- Ghindilis, A.L.; Atanasov, P.; Wilkins, M.; Wilkins, E. Immunosensors: Electrochemical sensing and other engineering approaches. Biosen. Bioelectron. 1998, 13, 113–131. [Google Scholar] [CrossRef]
- Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458. [Google Scholar] [CrossRef] [PubMed]
- Willner, I.; Katz, E.; Willner, B. Layered biomaterials on electrode supports: Routes to electrochemical biosensors, immunosensors and DNA-sensors. Sens. Updat. 2015, 5, 45–102. [Google Scholar] [CrossRef]
- Patricia, L.; Ruth, S. Electrochemical immunosensor for prostate-specific antigens using a label-free second antibody based on silica nanoparticles and polymer brush. Bioelectrochemistry 2015, 101, 75–83. [Google Scholar]
- Cristea, C. Immunosensors. Inter. J. Phar. Tech. 2015, 3, 1709–1723. [Google Scholar]
- Wen, W.; Yan, X.; Zhu, C.Z.; Du, D. Recent advances in electrochemical immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosen. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
- Justino, C.I. Duarte, A.C.; Rocha-Santos, T.A. Immunosensors in clinical laboratory diagnostics. Adv. Clin. Chem. 2016, 73, 65–108. [Google Scholar] [PubMed]
- Aboulenein, H.Y. Immunosensors in clinical and environmental analysis. Crit. Rev. Anal. Chem. 2015, 45, 2–31. [Google Scholar]
- Duffy, G.F.; Moore, E.F. Electrochemical immunosensors for food analysis: A review of recent developments. Anal. Lett. 2016. [Google Scholar] [CrossRef]
- Briggs, B.D.; Knecht, M.R. Nanotechnology meets biology: Peptide-based methods for the fabrication of functional materials. J. Phys. Chem. Lett. 2016, 3, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Langer, R.; Weissleder, R. Nanotechnology. JAMA 2015, 313, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Abdorahim, M.; Rabiee, M.; Alhosseini, S.N.; Tahriri, M.; Yazdanpanah, S.; Alavi, S.H.; Tayebi, L. Nanomaterials-based electrochemical immunosensors for cardiac troponin recognition: An illustrated review. TRAC 2016, 82, 337–347. [Google Scholar] [CrossRef]
- Ju, H.X. Sensitive biosensing strategy based on functional nanomaterials. Sci. China Chem. 2011, 54, 1202. [Google Scholar] [CrossRef]
- Baghayeri, M.; Nazarzadeh, Z.E.; Hasanzadeh, R. Facile synthesis of PSMA-g-3ABA/MWCNTs nanocomposite as a substrate for hemoglobin immobilization: Application to catalysis of H2O2. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 39, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Cheng, W.; Wang, X.; Ding, S.; Ju, H. Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. J. Am. Chem. Soc. 2008, 130, 7224–7225. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, F.F.; Lan, X.Q.; Wang, X.Y.; Wang, J.M.; Meng, C.G. Electrochemically reduced graphene oxide and Nafion nanocomposite for ultralow potential detection of organophosphate pesticide. Sens. Actuators B-Chem. 2013, 177, 724–729. [Google Scholar] [CrossRef]
- Kumar, D.; Saini, N.; Jain, N.; Sareen, R.; Pandit, V. Gold nanoparticles: An era in bionanotechnology. Expert Opin. Drug Deliv. 2013, 10, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Patolsky, F.; Katz, E.; Hainfeld, J.F.; Willner, I. Plugging into Enzymes: Nanowiring of redox enzymes by a gold nanoparticle. Science. 2003, 299, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.U.; Lim, S.A. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: A review. RSC Adv. 2016, 6, 24995–25014. [Google Scholar]
- Karunakaran, C.; Pandiaraj, M.; Santharaman, P. Immunosensors. Biosens. Bioelectron. 2015, 4, 205–245. [Google Scholar]
- Wang, H.; Shen, G.; Yu, R. Aspects of recent development of immunosensors. In Electrochemical Sensors, Biosensors and their Biomedical Applications; Yu, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 237–260. [Google Scholar]
- Aizawa, M.; Morioka, A.; Suzuki, S.; Nagamura, Y. Enzyme immunosensor. III. Amperometric determination of human chorionic gonadotropin by membrane-bound antibody. Anal. Biochem. 1979, 94, 22–28. [Google Scholar] [CrossRef]
- Bauer, C.G.; Eremenko, A.V.; Ehrentreich-Förster, E.; Bier, F.F.; Makower, A.; Halsall, H.B.; Heineman, W.R.; Scheller, F.W. Zeptomole-detecting biosensor for alkaline phosphatase in an electrochemical immunoassay for 2,4-dichlorophenoxyacetic acid. Anal. Chem. 1996, 68, 2453–2458. [Google Scholar] [CrossRef] [PubMed]
- Medyantseva, E.P.; Khaldeeva, E.V.; Glushko, N.I.; Budnikov, H.C. Amperometric enzyme immunosensor for the determination of the antigen of the pathogenic fungi Trichophyton rubrum. Anal. Chim. Acta 2000, 411, 13–18. [Google Scholar] [CrossRef]
- Zhong, H.; Yuan, R.; Chai, Y.; Li, W.; Zhang, Y.; Wang, C. Amperometric biosensor for hydrogen peroxide based on horseradish peroxidase onto gold nanowires and TiO2 nanoparticles. Bioprocess Biosyst. Eng. 2011, 34, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Rahman, M.A.; Rhee, C.K. Amplified electrochemical detection of a cancer biomarker by enhanced precipitation using horseradish peroxidase attached on carbon nanotubes. Anal. Chem. 2012, 84, 6407–6415. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.X.; Liu, B.; Liu, L.L.; Lia, Y.H.; Huang, K.J.; Zhang, Q.Y. Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sens. Actuators B-Chem. 2016, 222, 1096–1102. [Google Scholar] [CrossRef]
- Hong, S.G.; Kim, J.H.; Kim, R.E.; Kwon, S.J.; Kim, D.W.; Jung, H.T.; Dordick, J.S.; Kim, J. Immobilization of glucose oxidase on graphene oxide for highly sensitive biosensors. Biotechnol. Bioprocess 2016, 21, 573–579. [Google Scholar] [CrossRef]
- Zhuo, Y.; Yi, W.J.; Lian, W.B.; Yuan, R.; Chai, Y.Q.; Chen, A.; Hu, C.M. Ultrasensitive electrochemical strategy for NT-proBNP detection with gold nanochains and horseradish peroxidase complex amplification. Biosens. Bioelectron. 2011, 26, 2188–2193. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.G.; Zhang, Y.; Wu, D.; Ma, H.M.; Pang, X.H.; Fan, D.W.; Wei, Q.; Du, B. Ultrasensitive label-free electrochemical immunosensor based on multifunctionalized graphene nanocomposites for the detection of alpha fetoprotein. Sci. Rep. 2017. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, S.; Roldán, M.; Pérez, S.; Fàbregas, E. Toward a fast, easy, and versatile immobilization of biomolecules into carbon nanotube/polysulfone-based biosensors for the detection of hCG hormone. Anal. Chem. 2008, 80, 6508–6514. [Google Scholar] [CrossRef] [PubMed]
- Herrasti, Z.; Martínez, F.; Baldrich, E. Carbon nanotube wiring for signal amplification of electrochemical magneto immunosensors: Application to myeloperoxidase detection. Anal. Bioanal. Chem. 2014, 43, 5487–5493. [Google Scholar] [CrossRef] [PubMed]
- Panda, C.; Dhar, B.B.; Malvi, B.; Bhattacharjee, Y.; Gupta, S.S. Catalytic signal amplification using [Fe(III)(biuret-amide)]-mesoporous silica nanoparticles: Visual cyanide detection. Chem. Commun. 2013, 49, 2216–2218. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wei, M.; Liu, S.Q. Silica nanoparticles as a carrier for signal amplification. Rev. Anal. Chem. 2012, 31, 163–176. [Google Scholar] [CrossRef]
- Huo, X.H.; Liu, X.Q.; Liu, J.; Sukumaran, P.; Alwarappan, S.; Wong, D.K.Y. Strategic applications of nanomaterials as sensing platforms and signal amplification markers at electrochemical immunosensors. Electroanalysis 2016, 28, 1730–1749. [Google Scholar] [CrossRef]
- Doldán, X.; Fagúndez, P.; Cayota, A.; Laíz, J.; Tosar, J.P. Electrochemical sandwich immunosensor for determination of exosomes based on surface marker-mediated signal amplification. Anal. Chem. 2016, 88, 10466–10473. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, A.; Giannetto, M.; Mattarozzi, M.; Costantini, M.; Mucchino, C.; Careri, M. Competitive immunosensor based on gliadin immobilization on disposable carbon-nanogold screen-printed electrodes for rapid determination of celiotoxic prolamins. Anal. Bioanal. Chem. 2016, 408, 7289–7298. [Google Scholar] [CrossRef] [PubMed]
- Janata, J. Immunoelectrode. J. Am. Chem. Soc. 1975, 97, 2914–2916. [Google Scholar] [CrossRef]
- Ghindilis, A.L.; Skorobotko, O.V.; Gavnlova, V.P.; Yaropolov, A.I. A new approach to the construction of potentiometric immunosensors. Biosens. Bioelectron. 1992, 7, 301–304. [Google Scholar] [CrossRef]
- Fu, Y.Z.; Yuan, R.; Tang, D.P.; Chai, Y.Q.; Xu, L. Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids Surface B 2005, 40, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.P.; Yuan, R.; Chai, Y.Q.; Liu, Y.; Zhong, X.; Dai, J.Y. Potentiometric diphtheria immunosensor based on a glassy carbon electrode modified with colloidal gold and anti-diph. Acta Chim. Sinca 2004, 62, 2062–2066. [Google Scholar]
- Kharitonov, A.B.; Alfonta, L.; Katz, E.; Willner, I. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry. J. Electroanal. Chem. 2000, 487, 133–141. [Google Scholar] [CrossRef]
- Chullasat, K.; Kanatharana, P.; Limbut, W.; Numnuam, A.; Thavarungkul, P. Ultra trace analysis of small molecule by label-free impedimetric immunosensor using multilayer modified electrode. Biosens. Bioelectron. 2011, 26, 4571–4578. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Zhou, J.; Yan, W.; Li, X.; Zhu, J.J. Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal. Chem. 2008, 80, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Dai, L.; Liu, Y.; Chen, X.J.; Yan, W.; Jiang, L.P.; Zhu, J.J. Immunosensors: (Ionic-liquid-doped polyaniline inverse opals: Preparation, characterization, and application for the electrochemical impedance immunoassay of hepatitis B surface antigen). Adv. Funct. Mater. 2009, 19, 3120–3128. [Google Scholar] [CrossRef]
- Zhuo, Y.; Yuan, R.; Chai, Y.Q.; Hong, C.L. Functionalized SiO2 labeled CA19–9 antibodies: A new strategy for signal amplification of antigen-antibody sensing processes. Analyst 2010, 135, 2036–2042. [Google Scholar] [CrossRef] [PubMed]
- Geng, P.; Zhang, X.N.; Meng, W.W.; Wang, Q.J.; Zhang, W.; Jin, L.T.; Feng, Z.; Wu, Z.R. Self-assembled monolayers-based immunosensor for detection of Escherichia coli using electrochemical impedance spectroscopy. Electrochim. Acta 2008, 53, 4663–4668. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Erf, G.F. Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal. Chem. 2004, 76, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Yagiuda, K.; Hemmi, A.; Ito, S.; Asano, Y. Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosens. Bioelectron. 1996, 11, 703–707. [Google Scholar] [CrossRef]
- Muhammad-Tahir, Z.; Alocilja, E.C. A conductometric biosensor for biosecurity. Biosens. Bioelectron. 2003, 18, 813–819. [Google Scholar] [CrossRef]
- Tang, J.; Huang, J.X.; Su, B.L.; Chen, H.F.; Tang, D.P. Sandwich-type conductometric immunoassay of alpha-fetoprotein in human serum using carbon nanoparticles as labels. Biochem. Eng. J. 2011, 53, 223–228. [Google Scholar] [CrossRef]
- Xu, T.S. Bioconjugation of peroxidase-like nanostructures with natural enzyme for in-situ amplified conductometric immunoassay of tissue polypeptide antigen in biological fluids. Biochem. Eng. J. 2016, 105, 36–43. [Google Scholar] [CrossRef]
- Berggren, C.; Bjarnason, B.; Johansson, G. Capacitive Biosensors. Electroanalysis 2015, 13, 173–180. [Google Scholar] [CrossRef]
- Basu, J.; Datta, S.; Roychaudhuri, C. A graphene field effect capacitive Immunosensor for sub-femtomolar food toxin detection. Biosens. Bioelectron. 2015, 68, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Mirsky, V.M.; Riepl, M.; Wolfbeis, O.S. Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecularalkylthiol films on gold electrodes. Biosens. Bioelectron. 1997, 12, 977–989. [Google Scholar] [CrossRef]
- Guo, S.J.; Dong, S.J. Biomolecule-nanoparticie hybrids for electrochemical biosensors. TRAC 2009, 28, 96–109. [Google Scholar]
- Hu, W.; Li, C.M. Nanomaterial-based advanced immunoassay. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.Z.; Yang, G.H.; Li, H.; Du, D.; Lin, Y.H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hu, S. Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim. Acta 2009, 165, 1–22. [Google Scholar] [CrossRef]
- Lai, G.S.; Wu, J.; Ju, H.X.; Yan, F. Streptavidin-functionalized silver nanoparticles enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Adv. Funct. Mater. 2011, 21, 2938–2943. [Google Scholar] [CrossRef]
- Zhong, Z.Y.; Wu, W.; Wang, D.; Wang, D.; Shan, J.L.; Qing, Y.; Zhang, Z.M. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model. Biosens. Bioelectron. 2010, 25, 2379–2383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ting, B.P.; Khan, M.; Pearce, M.C.; Yang, Y.; Gao, Z.; Ying, J.Y. Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. Biosens. Bioelectron. 2010, 26, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.P.; Ma, W.; Long, Y.T. Alcohol dehydrogenase-catalyzed gold nanoparticle seed-mediated growth allows reliable detection of disease biomarkers with the naked eye. Anal. Chem. 2015, 87, 5891–5896. [Google Scholar] [CrossRef] [PubMed]
- Luna, D.M.N.; Avelino, K.Y.P.S.; Cordeiro, M.T.; Andrade, C.A.S.; Oliveira, M.D.L. Electrochemical immunosensor for dengue virus serotypes based on 4-mercaptobenzoic acid modified gold nanoparticles on self-assembled cysteine monolayers. Sens. Actuators B-Chem. 2015, 220, 565–572. [Google Scholar] [CrossRef]
- Truong, P.L.; Cao, C.; Park, S.; Kim, M.; Sim, S.J. A new method for non-labeling attomolar detection of diseases based on an individual gold nanorod immunosensor. Lab Chip. 2011, 11, 2591–2597. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Sun, T.; Grattan, K.T.V. Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sens. Actuators B Chem. 2014, 195, 332–351. [Google Scholar] [CrossRef]
- Ding, Y.Y.; Li, D.; Li, B.; Du, W.; Zheng, J.Y.; Yang, M.H. A water-dispersible, ferrocene-tagged peptide nanowire for amplified electrochemical immunosensing. Biosens. Bioelectron. 2013, 48, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Omidfar, K.; Zarei, H.; Gholizadeh, F.; Larijani, B. A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41-polyvinyl alcohol nanocomposite and colloidal gold nanoparticles. Anal. Biochem. 2012, 421, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Z.; Liu, J.Q.; Davis, T.P.; Gooding, J.J. Electrochemical impedance immunosensor based on gold nanoparticles and aryl diazonium salt functionalized gold electrodes for the detection of antibody. Biosens. Bioelectron. 2011, 26, 3660–3665. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.P.; Deng, Y.J.; Jin, X.Y.; Chen, L.G.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization. Anal. Biochem. 2009, 389, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Owino, J.H.O.; Arotiba, O.A.; Hendricks, N.; Songa, E.A.; Jahed, N.; Waryo, T.T.; Ngece, R.F.; Baker, P.G.L.; Iwuoha, E.I. Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of Aflatoxin B1. Sensors 2008, 8, 8262–8274. [Google Scholar] [CrossRef] [PubMed]
- Ahirwal, G.K.; Mitra, C.K. Gold nanoparticles based sandwich electrochemical immunosensor. Biosens. Bioelectron. 2010, 25, 2016–2020. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Skeete, Z.; Shan, S.; Yan, S.; Kurzatkowska, K.; Zhao, W.; Ngo, Q.M.; Holubovska, P.; Luo, J.; Hepel, M.; et al. Surface enhanced raman scattering detection of cancer biomarkers with bifunctional nanocomposite probes. Anal. Chem. 2015, 87, 10696–10702. [Google Scholar] [CrossRef] [PubMed]
- Das, J.; Aziz, M.A.; Yang, H. A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J. Am. Chem. Soc. 2006, 128, 16022–16023. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Tang, D.R.; Su, B.L.; Huang, J.X.; Qiu, B.; Chen, G.N. Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanopaitic1es-coated carbon nanotubes as nanocatalyts. Biosens. Bioelectron. 2011, 7, 3219–3226. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.B.; Ma, Z.F. Electrochemical immunosensor based on nanoporpus gold loading thionine for carcinoembryonic antigen. Anal. Chim. Acta 2013, 780, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Zeng, G.M.; Zhang, Y.; Tang, L.; Huang, D.L.; Liu, C.; Pang, Y.; Luo, J. Trace detection of picloram using an electrochemical immunosensor based on three-dimensional gold nanoclusters. Anal. Biochem. 2010, 407, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Xiang, Z.F.; Fu, X.; Wang, S.P.; Shen, G.L.; Yu, R.Q. Silver-enhanced colloidal gold metalloimmunoassay for Schistosoma japonicum antibody detection. J. Immunol. Methods 2005, 301, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.F.; Huang, H.; Zhang, G.; Zhang, X.J.; Fang, B.; Wang, L. Dual amplification strategy for the fabrication of highly sensitive interleukin-6 amperometric immunosensor based on poly-dopamine. Langmuir 2011, 27, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, M.H.; Wang, X.S.; Zhang, W.J.; Yang, D.P.; Cui, L.H.; Wang, X.S. Label-free 3D Ag nanoflower-based electrochemical immunosensor for the detection of Escherichia coli O157:H7 pathogens. Nanoscale Res. Lett. 2016, 11, 507. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chu, C.C.; Shen, L.; Deng, W.P.; Yan, M.; Ge, S.G.; Yu, J.H.; Song, X.R. An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels. Sens. Actuators B-Chem. 2015, 206, 30–36. [Google Scholar] [CrossRef]
- Chu, X.; Fu, X.; Chen, K.; Shen, G.L.; Yu, R.Q. An electrochemical stripping metalloimmunoassay based on silver-enhanced gold nanoparticle label. Biosens. Bioelectron. 2005, 20, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Ding, L.; Qu, F.L. Sensitive electrochemical immunosensor for platelet-derived growth factor in serum with electron transfer mediated by gold nanoparticles initiated silver enhancement. Measurement 2013, 46, 279–283. [Google Scholar] [CrossRef]
- Wang, H.J.; Bai, L.J.; Chai, Y.Q.; Yuan, R. Synthesis of Multi-fullerenes encapsulated Palladium nanocage, and its application in electrochemiluminescence immunosensors for the detection of Streptococcus suis Serotype 2. Small 2016, 10, 1857–1865. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Wang, X.H.; Zhang, J.M.; Feng, X.H.; Liu, X.H. Detection of estradiol at an electrochemical immunosensor with a Cu UPD|DTBP-Protein G scaffold. Biosens. Bioelectron. 2012, 35, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Mu, Z.G.; Zhu, C.Z.; Wei, Q.; Li, H.; Du, D.; Lin, Y.H. Graphene loaded bimetallic Au@Pt nanodendrites enhancing ultrasensitive electrochemical immunoassay of AFP. Sens. Actuators B Chem. 2016, 231, 513–519. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, H.M.; Yan, L.G.; Cao, W.; Yan, T.; Wei, Q.; Du, B. Copper-doped titanium dioxide nanoparticles as dual-functional labels for fabrication of electrochemical immunosensors. Biosens. Bioelectron. 2014, 59, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Yuan, R.; Chai, Y.Q.; Mao, L.; Su, H.L.; Jiang, W.; Liang, M. Electrochemical immunosensor for detecting carcinoembryonic antigen using hollow Pt nanospheres-labeled multiple enzyme-linked antibodies as labels for signal amplification. Biochem. Eng. J. 2011, 56, 116–124. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Okon, S.L. Nanomaterial-based electrochemical immunosensors for clinically significant biomarkers. Materials 2014, 7, 4669–4709. [Google Scholar] [CrossRef]
- Cui, Z.T.; Wu, D.; Zhang, Y.; Ma, H.M.; Li, H.; Du, B.; Wei, Q.; Ju, H.X. Ultrasensitive electrochemical immunosensors for multiplexed determination using mesoporous platinum nanoparticles as nonenzymatic labels. Anal. Chim. Acta 2014, 807, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.T.; Zheng, X.; Li, H.F.; Lin, J.M. Application of carbon-based nanomaterials in sample preparation: A review. Anal. Chim. Acta 2013, 784, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.C.; Rodrigues, D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A review of mechanisms and applications. Carbon 2015, 91, 122–143. [Google Scholar] [CrossRef]
- Cha, C.; Shin, S.R.; Annabi, N.; Dokmeci, M.R.; Khademhosseini, A. Carbon-based nanomaterials: Multifunctional materials for biomedical engineering. ACS Nano 2013, 7, 2891–2897. [Google Scholar] [CrossRef] [PubMed]
- Zarei, H.; Ghourchian, H.; Eskandari, K.; Zeinali, M. Magnetic nanocomposite of anti-human IgG/COOH-multiwalled carbon nanotubes/Fe3O4 as a platform for electrochemical immunoassay. Anal. Biochem. 2012, 421, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Patel, V.; Vaqué, J.P.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive electrochemical immunosensor for oral cancer biomarker IL-6 using carbon nanotube forest electrodes and multilabel amplification. Anal. Chem. 2010, 82, 3118–3123. [Google Scholar] [CrossRef] [PubMed]
- Nie, H.G.; Liu, S.J.; Yu, R.Q.; Jiang, J.H. Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angew. Chem. Int. Ed. 2009, 48, 9862–9866. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Deng, W.P.; Su, Y.; Zhu, X.H.; Peng, C.; Hu, H.Y.; Peng, H.Z.; Song, S.P.; Fan, C.H. Carbon nanotube-based ultrasensitive multiplexing electrochemical immunosensor for cancer biomarkers. Biosens. Bioelectron. 2011, 30, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Sardesai, N.P.; Barron, J.C.; Rusling, J.F. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins. Anal. Chem. 2011, 83, 6698–6703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, R.K.; Liu, X.Y.; Yang, L.Q.; Lu, Q.J.; Liu, M.L.; Li, H.T.; Zhang, Y.Y.; Yao, S.Z. A novel multiple signal amplifying immunosensor based on the strategy of in situ-produced electroactive substance by ALP and carbon-based Ag-Au bimetallic as the catalyst and signal enhancer. Biosens. Bioelectron. 2016. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Munge, B.; Patel, V.; Jensen, G.; Bhirde, A.; Gong, J.D.; Kim, S.N.; Gillespie, J.; Gutkind, J.S.; Papadimitrakopoulos, F.; et al. Carbon nanotube amplification strategies for highly sensitive immunodetection of cancer biomarkers. J. Am. Chem. Soc. 2006, 128, 11199–11205. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.J.; Akter, R.; Han, O.H.; Rhee, C.K.; Rahman, M.A. Increased electrocatalyzed performance through dendrimer-encapsulated gold nanoparticles and carbon nanotube-assisted multiple bienzymatic labels: Highly sensitive electrochemical immunosensor for protein detection. Anal. Chem. 2013, 85, 1784–1791. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Z.; Wang, S.; Liu, J.Q.; Song, D.D. An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal. Chem. 2012, 84, 3921–3928. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, G.D.; Jan, M.R. Ultrasensitive electrical biosensing of proteins and DNA: Carbon-nanotube derived amplification of the recognition and transduction events. J. Am. Chem. Soc. 2004, 126, 3010–3011. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Cella, L.N.; Chen, W.; Myung, N.V. Mulchandani, A. Carbon nanotubes-based chemiresistive immunosensor for small molecules: Detection of nitroaromatic explosives. Biosens. Bioelectron. 2010, 26, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B-Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Khanra, P.; Mishra, A.K.; Kim, N.H.; Lee, J.H. Recent advances in graphene-based biosensors. Biosens. Bioelectron. 2011, 26, 4637–4648. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Dong, X.C.; Chen, P. ChemInform abstract: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Cheng, J.S.; Tang, L.H.; Jiang, J.H. Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing. Adv. Funct. Mater. 2010, 20, 3366–3372. [Google Scholar] [CrossRef]
- Singh, R.; Hong, S.; Jang, J. Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immunosensor integrated with a microfluidic platform. Sci. Rep. 2017. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.Z.; Chen, W. Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosens. Bioelectron. 2016, 89, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, J.; Sharma, M.K.; Ponmariappan, S.; Sarita; Shaik, M.; Upadhyay, S. Electrochemical immunosensor for botulinum neurotoxin type-E using covalently ordered graphene nanosheets modified electrodes and gold nanoparticles-enzyme conjugate. Biosens. Bioelectron. 2015, 69, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Tuteja, S.K.; Bhalla, V.; Shekhawat, G.; Dravid, V.P.; Suri, C.R. Bio-functionalized graphene-graphene oxide nanocomposite based electrochemical immunosensing. Biosens. Bioelectron. 2013, 39, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Javadi, A.; Li, H.; Gong, S.Q. Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet. Biosens. Bioelectron. 2010, 26, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, M.; Ge, S.G.; Yan, M.; Yu, J.H.; Huang, J.D.; Liu, S. Ultrasensitive electrochemiluminescence immunosensor based on nanoporous gold electrode and Ru-AuNPs/graphene as signal labels. Sens. Actuators B Chem. 2013, 181, 50–56. [Google Scholar] [CrossRef]
- Yang, M.H.; Javadi, A.; Gong, S.Q. Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sens. Actuators B Chem. 2011, 155, 357–360. [Google Scholar] [CrossRef]
- Wu, D.; Guo, A.P.; Guo, Z.K.; Xie, L.L.; Wei, Q.; Du, B. Simultaneous electrochemical detection of cervical cancer markers using reduced graphene oxide-tetraethylene pentamine as electrode materials and distinguishable redox probes as labels. Biosens. Bioelectron. 2014, 54, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.F.; Liu, N. Au-ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes. Biosens. Bioelectron. 2014, 51, 184–190. [Google Scholar]
- Feng, D.X.; Li, L.H.; Han, X.W.; Fang, X.; Li, X.Z.; Zhang, Y.Z. Simultaneous electrochemical detection of multiple tumor markers using functionalized graphene nanocomposites as non-enzymatic labels. Sens. Actuators B Chem. 2014, 201, 360–368. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Feng, H.B.; Wu, Y.M.; Joshi, L.; Zeng, X.Q.; Li, J.H. Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens. Bioelectron. 2012, 35, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.J.; Liu, S.Q.; Ge, S.G.; Yan, M.; Yu, J.H.; Hu, X.T. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotubes-graphene composite and functionalized mesoporous materials. Biosens. Bioelectron. 2012, 33, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Hayashi, T.; Endo, M.; Dresselhaus, M.S. Carbon Nanofibers. In Springer Handbook of Nanomaterials, 1st ed.; Robert, V., Ed.; Springer: New Delhi, India, 2013; pp. 233–262. [Google Scholar]
- Yoon, S.H.; Lim, S.; Song, Y.; Ota, Y.; Qiao, W.M.; Tanaka, A.; Mochida, I. KOH activation of carbon nanofibers. Carbon 2004, 42, 1723–1729. [Google Scholar] [CrossRef]
- Cui, R.J.; Zhu, J.J. Fabrication of a novel electrochemical immunosensor based on the gold nanoparticles/colloidal carbon nanosphere hybrid material. Electronchim. Acta 2010, 55, 7814–7817. [Google Scholar] [CrossRef]
- Wu, L.N.; Yan, F.; Ju, H.X. An amperometric immunosensor for separation-free immunoassay of CA125 based on its covalent immobilization coupled with thionine on carbon nanofiber. J. Immunol. Methods. 2007, 322, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.J.; Liu, C.; Shen, J.M.; Gao, D.; Zhu, J.J.; Chen, H.Y. Gold nanoparticle-colloidal carbon nanosphere hybrid material: Preparation, characterization, and application for an amplified electrochemical immunoassay. Adv. Funct. Mater. 2008, 18, 2197–2204. [Google Scholar] [CrossRef]
- Du, D.; Zou, Z.X.; Shin, Y.S.; Wang, J.; Wu, H.; Engelhard, M.H.; Liu, J.; Aksay, I.A.; Lin, Y.H. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal. Chem. 2010, 82, 2989–2995. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Q.; Zhang, B.; Cui, Y.L. Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues. ACS Appl. Mater. Inter. 2011, 3, 4668–4676. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.L.; Yuan, R.; Chai, Y.Q.; Zhuo, Y. Ferrocenyl-doped silica nanoparticles as an immobilized affinity support for electrochemical immunoassay of cancer antigen 15-3. Anal. Chim. Acta 2009, 633, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Li, R.; Wang, H.X.; Liu, S.; Wang, H.; Wei, Q.; Du, B. Hollow mesoporoussilica microspheres as sensitive labels for immunoassay of prostate-specific antigen. Analyst 2012, 137, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Li, H.; Javadi, A.; Gong, S.Q. Multifunctional mesoporous silica nanoparticles as labels for the preparation of ultrasensitive electrochemical immunosensors. Biomaterials 2010, 31, 3281–3286. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.Y.; Li, H.; Du, B.; Yang, M.H.; Li, Y.; Wu, D.; Zhao, Y.F.; Dai, Y.X.; Wei, Q. Ultrasensitive electrochemical immunoassay for BRCA1 using BMIM BF4-coated SBA-15 as labels and functionalized graphene as enhancer. Biomaterials 2011, 32, 2117–2123. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.P.; Su, B.L.; Tang, J.; Ren, J.J.; Chen, G.N. Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal. Chem. 2010, 82, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; Chen, C.L.; Liu, S.Q. Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal. Chem. 2009, 81, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Zhang, C.Y.; Cao, X.D.; Liu, S.Q. Versatile immunosensor using a quantum dot coated silica nanosphere as a label for signal amplification. Anal. Chem. 2010, 82, 6422–6429. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Chen, C.L.; Li, R.N.; Liu, S.Q. CdTe quantum dot functionalized silica nanosphere labels for ultrasensitive detection of biomarker. Chem. Commun. 2009, 19, 2670–2672. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.A.; Wang, J.; Kawde, A.N.; Xiang, Y.; Gothelf, K.V.; Collins, G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 2006, 128, 2228–2229. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.K.; Zhang, J.R.; Liu, Q.; Huang, H.P. Electrochemical immunosensor for alpha-fetoprotein determination based on ZnSe quantum dots/Azure I/gold nanoparticles/poly (3,4-ethylenedioxythiophene) modified Pt electrode. Electrochim. Acta 2013, 114, 448–453. [Google Scholar] [CrossRef]
- Martínyerga, D.; Gonzálezgarcía, M.B.; Costagarcía, A. Electrochemical immunosensor for anti-tissue transglutaminase antibodies based on the in situ detection of quantum dots. Talanta 2014, 130, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Duan, F.H.; He, L.H.; Peng, D.L.; Yan, F.F.; Wang, M.H.; Zong, W.; Jia, C.X. Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchim. Acta 2016, 183, 1089–1097. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Zhu, J.J. Simultaneous detection of tumor cell apoptosis regulators Bcl-2 and Bax through a dual-signal-marked electrochemical immunosensor. ACS Appl. Mater. Interfaces. 2016, 8, 7674–7682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ding, S.N. Sandwich-structured electrogenerated chemiluminescence immunosensor based on dual-stabilizers-capped CdTe quantum dots as signal probes and Fe3O4-Au nanocomposites as magnetic separable carriers. Sens. Actuators B-Chem. 2017, 240, 1123–1133. [Google Scholar] [CrossRef]
- Liu, G.; Lin, Y.Y.; Wang, J.; Wu, H.; Wai, C.M.; Lin, Y. Disposable electrochemical immunosensor diagnosis device based on nanoparticle probe and immunochromatographic strip. Anal. Chem. 2007, 79, 7644–7653. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Pan, H.C.; Zhu, J.J.; Chen, H.Y. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal. Chem. 2007, 79, 8494–8501. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.T.; Zhang, H.Q.; Hu, S.R.; Li, F.M.; Weng, W.; Chen, J.H.; Wang, Q.X.; He, Y.S.; Zhang, W.X.; Bao, X.X. A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots-chitosan composite film. Biosens. Bioelectron. 2014, 52, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, I.; Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical magnetic immunosensors for the determination of ceruloplasmin. Electroanalysis 2013, 25, 2166–2174. [Google Scholar] [CrossRef]
- Zhuo, Y.; Yuan, P.X.; Yuan, R.; Chai, Y.Q.; Hong, C.L. Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 2009, 30, 2284–2290. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.P.; Yuan, R.; Chai, Y.Q. Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal. Chem. 2008, 80, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.F.; Zhang, Q.; Zhang, S.S. An electrochemical immunoassay for protein based on bio bar code method. Biosens. Bioelectron. 2009, 24, 2434–2440. [Google Scholar] [CrossRef] [PubMed]
- Mani, V.; Chikkaveeraiah, B.V.; Patel, V.; Gutkind, J.S.; Rusling, J.F. Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 2009, 3, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.N.; Bian, Z.P.; Peng, J.; Jiang, F.; Yang, G.H.; Zhu, Y.D.; Yang, D.; Jiang, L.P.; Zhu, J.J. Ultrasensitive multianalyte electrochemical immunoassay based on metal ion functionalized titanium phosphate nanospheres. Anal. Chem. 2012, 84, 7810–7815. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Gu, Y.; Yun, Y.; Li, M.; Jin, X.; Wang, S. Nanomaterials for Electrochemical Immunosensing. Sensors 2017, 17, 1041. https://doi.org/10.3390/s17051041
Pan M, Gu Y, Yun Y, Li M, Jin X, Wang S. Nanomaterials for Electrochemical Immunosensing. Sensors. 2017; 17(5):1041. https://doi.org/10.3390/s17051041
Chicago/Turabian StylePan, Mingfei, Ying Gu, Yaguang Yun, Min Li, Xincui Jin, and Shuo Wang. 2017. "Nanomaterials for Electrochemical Immunosensing" Sensors 17, no. 5: 1041. https://doi.org/10.3390/s17051041