Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods
Abstract
:1. Introduction
1.1. Application Domains
1.2. Objectives and Contributions of This Paper
1.3. Organisation of This Paper
2. Background
2.1. IEEE 802.15.4/ZigBee Cluster-Tree Topologies
2.2. Related Work
3. Alternative Paths for Message Streams in Cluster-Tree Wireless Sensor Networks
3.1. Network Model
3.2. Alternative-Path Definition Algorithm
Algorithm 1: Alternative-Path Definition (ARounD-def) Algorithm |
3.3. Alternative-Path Activation Algorithm
- Global ARounD Activity Period (GAP): period during which there are no active clusters in the cluster-tree network;
- Local ARounD Activity Period (LAP): period during which there are no active clusters in the neighbourhood of the RP node.
Algorithm 2: Alternative-Path Activation (ARounD-act) Algorithm |
3.4. ARounD Protocol Mechanisms
3.4.1. Synchronisation and Configuration of the Involved Nodes
3.4.2. Closing the ARounD Communication
4. Simulation Assessment of the ARounD Communication Scheme
4.1. Simulation Environment
4.1.1. Characterisation of Data Traffic
- background data traffic: 500 general-purpose sensor nodes sending convergecast periodic data towards the sink node (PAN coordinator).
- source-to-destination data traffic: a specific source node sending periodic data to a specific destination node.
4.1.2. Performance Metrics
- End-to-end Delay: time interval between the data frame generation at the application layer of the source node and its reception at the application layer of the destination node.
- Packet Loss Rate: the percentage of packets lost during the communication, considering the number of data packets successfully received at the destination node and the number of packets generated by the source node.
4.2. Results and Discussion
5. Conclusions
Future Considerations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stankovic, J.A. When Sensor and Actuator Networks Cover the World. ETRI J. 2008, 30, 627–633. [Google Scholar] [CrossRef]
- Baronti, P.; Pillai, P.; Chook, V.W.C.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless Sensor Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee standards. Comput. Commun. 2007, 30, 1655–1695. [Google Scholar] [CrossRef]
- Yick, J.; Mukherjee, B.; Ghosal, D. Wireless Sensor Network Survey. Comput. Netw. 2008, 52, 2292–2330. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless Sensor Networks: A Survey. Comput. Netw. 2002, 38, 393–422. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard for Local and Metropolitan Area Networks (WPANs); IEEE Computer Society: Washington, DC, USA, 2015. [Google Scholar]
- ZigBee Specification. ZigBee Alliance (Document 053474r20); ZigBee Alliance: San Ramon, CA, USA, 2012. [Google Scholar]
- Koubaa, A.; Cunha, A.; Alves, M.; Tovar, E. TDBS: A Time Division Beacon Scheduling Mechanism for ZigBee Cluster-Tree Wireless Sensor Networks. Real-Time Syst. 2008, 40, 321–354. [Google Scholar] [CrossRef]
- Muthukumaran, P.; de Paz Alberola, R.; Spinar, R.; Pesch, D. MeshMAC: Enabling Mesh Networking over IEEE 802.15.4 through Distributed Beacon Scheduling. Ad Hoc Netw. 2009, 28, 561–575. [Google Scholar]
- Pan, M.S.; Tseng, Y.C. Quick Convergecast in ZigBee Beacon-enabled Tree-based Wireless Sensor Networks. Comput. Commun. 2008, 31, 999–1011. [Google Scholar] [CrossRef]
- Di Francesco, M.; Anastasi, G.; Conti, M.; Das, S.K.; Neri, V. Reliability and Energy-Efficiency in IEEE 802.15.4/ZigBee Sensor Networks: An Adaptive and Cross-Layer Approach. IEEE J. Sel. Areas Commun. 2011, 29, 1508–1524. [Google Scholar] [CrossRef]
- IEEE Standards Association. IEEE Standard for Local and metropolitan area networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayer. IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011); IEEE Computer Society: New York, NY, USA, 2012. [Google Scholar]
- Jurcík, P.; Koubaa, A.; Severino, R.; Alves, M.; Tovar, E. Dimensioning and Worst-Case Analysis of Cluster-Tree Sensor Networks. ACM Trans. Sens. Netw. 2010, 7. [Google Scholar] [CrossRef]
- Choi, W.; Lee, S. A Novel GTS Mechanism for Reliable Multihop Transmission in the IEEE 802.15.4 Network. Int. J. Distrib. Sens. Netw. 2012, 2012. [Google Scholar] [CrossRef]
- Hanzalek, Z.; Jurcík, P. Energy Efficient Scheduling for Cluster-Tree Wireless Sensor Networks with Time-Bounded Data Flows: Application to IEEE 802.15.4/ZigBee. IEEE Trans. Ind. Inform. 2010, 6, 438–450. [Google Scholar] [CrossRef]
- Toscano, E.; Lo Bello, L. Multichannel Superframe Scheduling for IEEE 802.15.4 Industrial Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2012, 8, 337–350. [Google Scholar] [CrossRef]
- Yeh, L.W.; Pan, M.S. Beacon Scheduling for Broadcast and Convergecast in ZigBee Wireless Sensor Networks. Comput. Commun. 2014, 38, 1–12. [Google Scholar] [CrossRef]
- Lee, B.H.; Yundra, E.; Wu, H.K.; Al Rasyid, M.U.H. Analysis of Superframe Duration Adjustment Scheme for IEEE 802.15.4 Networks. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 1–17. [Google Scholar] [CrossRef]
- Shobana, S.J.; Paramasivan, B. CRAP: Cluster based Congestion Control with Rate Adjustment based on Priority in Wireless Sensor Networks. Int. J. Multimedia Ubiquitous Eng. 2015, 10, 421–436. [Google Scholar] [CrossRef]
- Felske, M.S.; Montez, C.; Pinto, A.S.R.; Vasques, F.; Portugal, P. GLHOVE: A Framework for Uniform Coverage Monitoring using Cluster-Tree Wireless Sensor Networks. In Proceedings of the IEEE 18th Conference on Emerging Technologies & Factory Automation, Cagliari, Italy, 10–13 September 2013; pp. 1–8. [Google Scholar]
- Akyildiz, I.F.; Vuran, M.C. Wireless Sensor Networks; John Wiley and Sons Ltd.: New York, NY, USA, 2010. [Google Scholar]
- Kumar, A.A.S.; Ovsthus, K.; Kristensen, L.M. An Industrial Perspective on Wireless Sensor Networks—A Survey of Requirements, Protocols, and Challenges. IEEE Commun. Surv. Tutor. 2014, 16, 1391–1412. [Google Scholar] [CrossRef]
- El-Aaasser, M.; Ashour, M. Energy aware classification for wireless sensor networks routing. In Proceedings of the 15th International Conference on Advanced Communication Technology, Pyeong Chang, Korea, 27–30 January 2013; pp. 66–71. [Google Scholar]
- Pantazis, N.A.; Nikolidakis, S.A.; Vergados, D.D. Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 551–591. [Google Scholar] [CrossRef]
- Hammoudeh, M.; Newman, R. Adaptive routing in wireless sensor networks: QoS optimisation for enhanced application performance. Inf. Fusion 2015, 22, 3–15. [Google Scholar] [CrossRef]
- Al-Karaki, J.N.; Kamal, A.E. Routing Techniques in Wireless Sensor Networks: A Survey. IEEE Wirel. Commun. 2004, 11, 6–28. [Google Scholar] [CrossRef]
- Dezfouli, B.; Radi, M.; Razak, S.A.; Hwee-Pink, T.; Bakar, K.A. Modeling low-power wireless communications. J. Netw. Comput. Appl. 2015, 51, 309–326. [Google Scholar] [CrossRef]
- Suriyachai, P.; Roedig, U.; Scott, A. A Survey of MAC Protocols for Mission-Critical Applications in Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2012, 14, 240–264. [Google Scholar] [CrossRef]
- Demirkol, I.; Ersoy, C.; Alagoz, F. MAC protocols for wireless sensor networks: A survey. IEEE Commun. Mag. 2006, 44, 115–121. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Kasimoglu, I.H. Wireless Sensor and Actor Networks—Research Challenges. Ad Hoc Netw. 2004, 2, 351–367. [Google Scholar] [CrossRef]
- Li, M.; Lin, H.J. Design and Implementation of Smart Home Control Systems Based on Wireless Sensor Networks and Power Line Communications. IEEE Trans. Ind. Electron. 2015, 62, 4430–4442. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless Sensor Networks for Agriculture—The State-of-the-art in Practice and Future Challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Lambrou, T.P.; Panayiotou, C.G. Collaborative Area Monitoring Using Wireless Sensor Networks with Stationary and Mobile Nodes. EURASIP J. Adv. Sig. Proc. 2009, 2009. [Google Scholar] [CrossRef]
- Kim, T.; Kim, S.H.; Yang, J.; Yoo, S.; Kim, D. Neighbor Table Based Shortcut Tree Routing in ZigBee Wireless Networks. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 706–716. [Google Scholar]
- Boukerche, A.; Turgut, B.; Aydin, N.; Ahmad, M.Z.; Bölöni, L.; Turgut, D. Routing protocols in ad hoc networks—A survey. Comput. Netw. 2011, 55, 3032–3080. [Google Scholar] [CrossRef]
- Abolhasan, M.; Wysocki, T.; Dutkiewicz, E. A review of routing protocols for mobile ad hoc networks. Ad Hoc Netw. 2004, 2, 1–22. [Google Scholar] [CrossRef]
- Kumar, D.; Aseri, T.C.; Patel, R.B. EEHC: Energy efficient heterogeneous clustered scheme for wireless sensor networks. Comput. Commun. 2009, 32, 662–667. [Google Scholar] [CrossRef]
- Bandara, H.M.N.D.; Jayasumana, A.P.; Illangasekare, T.H. A Top-Down Clustering and Cluster-Tree-Based Routing Scheme for Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2011, 7, 1–17. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, D.; Zhu, G. End-to-end delay and packet drop rate performance for a wireless sensor network with a cluster-tree topology. Wireless Commun. Mob. Comput. 2014, 14, 729–744. [Google Scholar] [CrossRef]
- Severino, R.; Pereira, N.; Tovar, E. Dynamic Cluster Scheduling for Cluster-tree WSNs. SpringerPlus 2014, 3, 493. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Choi, S.; Park, T. Maximizing lifetime of cluster-tree ZigBee networks under end-to-end deadline constraints. IEEE Commun. Lett. 2010, 14, 214–216. [Google Scholar] [CrossRef]
- Abbasi, A.A.; Younis, M. A Survey on Clustering Algorithms for Wireless Sensor Networks. Comput. Commun. 2007, 30, 2826–2841. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.; Hao, B.; Li, J. A Survey on Routing Protocols for Large-Scale Wireless Sensor Networks. Sensors 2011, 11, 3498–3526. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Jain, S.; Tiwari, S. Energy Efficient Clustering Algorithms in Wireless Sensor Networks: A Survey. Int. J. Comput. Sci. Issues 2011, 8, 259–268. [Google Scholar]
- Liu, X. A Survey on Clustering Routing Protocols in Wireless Sensor Networks. Sensors 2012, 12, 11113–11153. [Google Scholar] [CrossRef] [PubMed]
- Naeimi, S.; Ghafghazi, H.; Chow, C.O.; Ishii, H. A Survey on the Taxonomy of Cluster-Based Routing Protocols for Homogeneous Wireless Sensor Networks. Sensors 2012, 12, 7350–7409. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, A.K.; Chinara, S. Comparison of Residual Energy-Based Clustering Algorithms for Wireless Sensor Network. ISRN Sens. Netw. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Heinzelman, W.R.; Chandrakasan, A.; Balakrishnan, H. Energy-Efficient Communication Protocol for Wireless Microsensor Networks. In Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2000. [Google Scholar]
- Akyildiz, I.; Vuran, M.; Akan, O. A Cross-Layer Protocol for Wireless Sensor Networks. In Proceedings of the IEEE 2006 40th Annual Conference on Information Sciences and Systems, Princeton, NJ, USA, 22–24 March 2006; pp. 1102–1107. [Google Scholar]
- Khatri, U.; Mahajan, S. Cross-layer design for wireless sensor networks: A survey. In Proceedings of the IEEE 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015; pp. 73–77. [Google Scholar]
- Jagadeesan, S.; Parthasarathy, V. Cross-Layer Design in Wireless Sensor Networks. In Advances in Computer Science, Engineering & Applications; Wyld, D.C., Zizka, J., Nagamalai, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 283–295. [Google Scholar]
- Semchedine, F.; Oukachbi, W.; Zaichi, N.; Bouallouche-Medjkoune, L. EECP: A New Cross-layer Protocol for Routing in Wireless Sensor Networks. Procedia Comput. Sci. 2015, 73, 336–341. [Google Scholar] [CrossRef]
- Vuran, M.C.; Akyildiz, I.F. XLP: A Cross-Layer Protocol for Efficient Communication in Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2010, 9, 1578–1591. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, S.; Han, G.; Shu, L.; Wu, H. A Tree-Cluster-Based Data-Gathering Algorithm for Industrial WSNs With a Mobile Sink. IEEE Access 2015, 3, 381–396. [Google Scholar] [CrossRef]
- Khatiri, A.; Mirjalily, G.; Khademzadeh, A. Energy-Efficient Shortcut Tree Routing in ZigBee Networks. In Proceedings of the IEEE Fourth International Conference on Computational Intelligence, Communication Systems and Networks, Nottingham, Notts, UK, 24–26 July 2012; pp. 117–122. [Google Scholar]
- Kim, H.S.; Bang, J.S.; Lee, Y.H. Distributed Network Configuration in Large-scale Low Power Wireless Networks. Comput. Netw. 2014, 70, 288–301. [Google Scholar] [CrossRef]
- Misic, J. On Slave-Slave Bridging with Non-Acknowledged GTS Access in 802.15.4 Beacon Enabled Networks. In Proceedings of the IEEE 21st International Conference on Advanced Information Networking and Applications Workshops, Niagara Falls, ON, Canada, 21–23 May 2007; pp. 641–646. [Google Scholar]
- Huang, Y.K.; Pang, A.C.; Hsiu, P.C.; Zhuang, W.; Liu, P. Distributed Throughput Optimization for ZigBee Cluster-Tree Networks. IEEE Trans. Parallel Distrib. Syst. 2012, 23, 513–520. [Google Scholar] [CrossRef]
- Abdeddaim, N.; Theoleyre, F.; Rousseau, F.; Duda, A. Multi-Channel Cluster Tree for 802.15.4 Wireless Sensor Networks. In Proceedings of the IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications, Sydney, Australia, 9–12 September 2012; pp. 590–595. [Google Scholar]
- Leão, E.; Montez, C.; Moraes, R.; Portugal, P.; Vasques, F. Superframe Duration Allocation Schemes to Improve the Throughput of Cluster-Tree Wireless Sensor Networks. Sensors 2017, 17, 249. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef]
- Etezadi, F.; Zarifi, K.; Ghrayeb, A.; Affes, S. Decentralized Relay Selection Schemes in Uniformly Distributed Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 2012, 11, 938–951. [Google Scholar] [CrossRef]
- Liu, L.; Hua, C.; Chen, C.; Guan, X. Relay Selection for Three-Stage Relaying Scheme in Clustered Wireless Networks. IEEE Trans. Veh. Technol. 2015, 64, 2398–2408. [Google Scholar] [CrossRef]
- Tselishchev, Y.; Boulis, A.; Libman, L. Experiences and Lessons from Implementing a Wireless Sensor Network MAC Protocol in the Castalia Simulator. In Proceedings of the 2010 IEEE Wireless Communication and Networking Conference, Sydney, Australia, 18–21 April 2010; pp. 1–6. [Google Scholar]
- Živković, M.; Nikolić, B.; Protić, J.; Popović, R. A Survey and Classification of Wireless Sensor Networks Simulators Based on the Domain of Use. Adhoc Sens. Wirel. Netw. 2014, 20, 1–43. [Google Scholar]
- Leão, E.; Moraes, R.; Montez, C.; Portugal, P.; Vasques, F. CT-SIM: A simulation model for wide-scale cluster-tree networks based on the IEEE 802.15.4 and ZigBee standards. Int. J. Distrib. Sens. Netw. 2017, 13, 1–17. [Google Scholar] [CrossRef]
- Pinto, A.R.; Montez, C.; Araujo, G.; Vasques, F.; Portugal, P. An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms. Inf. Fusion 2014, 15, 90–101. [Google Scholar] [CrossRef]
- Costa, D.G.; Silva, I.; Guedes, L.A.; Vasques, F.; Portugal, P. Availability Issues in Wireless Visual Sensor Networks. Sensors 2014, 14, 2795–2821. [Google Scholar] [CrossRef] [PubMed]
- Semprebom, T.; Montez, C.; Vasques, F. (m,k)-firm pattern spinning to improve the GTS allocation of periodic messages in IEEE 802.15.4 networks. EURASIP J. Wirel. Commun. Netw. 2013, 2013, 222. [Google Scholar] [CrossRef]
Frame Type Value | Description |
---|---|
000 | ACK for an ARounD configuration frame |
001 | ACK for an ARounD closing frame |
010 | ACK for an ARounD hello frame |
011–111 | Reserved |
Definition | Standard Value |
---|---|
Environment size | 200 m × 200 m |
Number of sensor nodes | 503 |
Nodes sending Background Data | 500 |
Radio model | Chipcon CC2420 |
Initial energy (per node) | 18,720 J |
Simulation time (each experiment) | 85,000 s |
Number of Background Data Frames (per node) | 1000 |
Periodicity of background Data Rate | from 1 pkt every 60 s up to 1 pkt every 40 s |
Number of Source-to-Destination Data Frames (Node 1) | 10,000 |
Periodicity of Source-to-destination Data Rate | 1 pkt every 4 s and 1 pkt every 8 s |
physical Data Rate | 250 kbps |
aBaseSlotDuration | 60 |
aNumSuperframeSlots | 16 |
aUnitBackoffPeriod | 20 |
BeaconOrder | 9 |
superframeOrder | ranging from 0 to 4 |
macMaxCSMABackoffs | 4 |
macMaxFrameRetries | 2 |
Information | Value |
---|---|
Average number of clusters | 59 |
Average maximum depth | 5 |
Average number of children per cluster | 8 |
Information | Scenario 1 | Scenario 2 |
---|---|---|
Average depth of Node 1 | 3 | 4 |
Average depth of Node 2 | 3 | 4 |
Average number of hops of the standard paths | 8 | 8 |
Average number of hops of the ARounD paths | 4 | 7 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leão, E.; Montez, C.; Moraes, R.; Portugal, P.; Vasques, F. Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods. Sensors 2017, 17, 1049. https://doi.org/10.3390/s17051049
Leão E, Montez C, Moraes R, Portugal P, Vasques F. Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods. Sensors. 2017; 17(5):1049. https://doi.org/10.3390/s17051049
Chicago/Turabian StyleLeão, Erico, Carlos Montez, Ricardo Moraes, Paulo Portugal, and Francisco Vasques. 2017. "Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods" Sensors 17, no. 5: 1049. https://doi.org/10.3390/s17051049
APA StyleLeão, E., Montez, C., Moraes, R., Portugal, P., & Vasques, F. (2017). Alternative Path Communication in Wide-Scale Cluster-Tree Wireless Sensor Networks Using Inactive Periods. Sensors, 17(5), 1049. https://doi.org/10.3390/s17051049