Chang’E-5T Orbit Determination Using Onboard GPS Observations
Abstract
:1. Introduction
2. Chang’E-5T Onboard GPS Data Analysis
2.1. Onboard GPS Data
2.2. Number of Visual GPS Satellites and PDOP
2.3. C1 Code Errors
3. Chang’E-5T Orbit Determination
3.1. Processing Strategy
3.2. Orbit Determination
3.2.1. Residual Analysis
3.2.2. Orbit Overlap Comparison
3.3. Kinematic and Dynamic Orbit Comparison
3.4. Orbit Determination with Different C/N0 Thresholds
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kang, Z.; Tapley, B.; Bettadpur, S.; Ries, J.; Nagel, P.; Pastor, R. Precise orbit determination for the GRACE mission using only GPS data. J. Geod. 2006, 80, 322–331. [Google Scholar] [CrossRef]
- Bock, H.; Jäggi, A.; Švehla, D.; Beutler, G.; Hugentobler, U.; Visser, P. Precise orbit determination for the GOCE satellite using GPS. Adv. Space Res. 2007, 39, 1638–1647. [Google Scholar] [CrossRef]
- Montenbruck, O.; Ramos-Bosch, P. Precision real-time navigation of LEO satellites using global positioning system measurements. GPS Solut. 2007, 12, 187–198. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Andres, Y.; von Engeln, A.; Marquardt, C. (Near-)real-time orbit determination for GNSS radio occultation processing. GPS Solut. 2012, 17, 199–209. [Google Scholar] [CrossRef]
- Jäggi, A.; Hugentobler, U.; Bock, H.; Beutler, G. Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv. Space Res. 2007, 39, 1612–1619. [Google Scholar] [CrossRef]
- Bock, H.; Jäggi, A.; Beutler, G.; Meyer, U. GOCE: Precise orbit determination for the entire mission. J. Geod. 2014, 88, 1047–1060. [Google Scholar] [CrossRef]
- Bauer, F.H.; Moreau, M.C.; Dahle-Melsaether, M.E.; Petrofski, W.P.; Stanton, B.J. The GPS Space Service Volume. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, USA, 11–14 September 2001; pp. 2503–2514. [Google Scholar]
- Bauer, F.H. GNSS Space Service Volume & Space User Data Update. In Proceedings of the International Committee for GNSS 10th Meeting, Boulder, CO, USA, 1–6 November 2015. [Google Scholar]
- Miller, J.J.; Bauer, F.H.; Oria, A.J.; Pace, S.; Parker, J.J.K. Achieving GNSS Compatibility and Interoperability to Support Space Users. In Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, USA, 12–16 September 2016. [Google Scholar]
- Czopek, F.M. Description and Performance of the GPS Block I and II L-Band Antenna and Link Budget. In Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1993), Salt Lake City, UT, USA, 22–24 September 1993; pp. 37–43. [Google Scholar]
- Geng, T.; Su, X.; Zhao, Q. MEO and HEO Satellites Orbit Determination Based on GNSS Onboard Receiver. In Proceedings of the China Satellite Navigation Conference (CSNC) 2012, GuangZhou, China, 15–19 May 2012; pp. 223–234. [Google Scholar]
- Unwin, M.; Steenwijk, R.D.V.V.; Blunt, P.; Hashida, Y.; Kowaltschek, S.; Price, S.R. Navigating Above the GPS Constellation-Preliminary Results from the SGR-GEO on GIOVE-A. In Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, USA, 16–20 September 2013; pp. 3305–3315. [Google Scholar]
- Ramakrishnan, S.; Reid, T.; Enge, P. Leveraging the L1 Composite Signal to enable autonomous navigation at GEO and beyond. In Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, USA, 16–20 September 2013; pp. 3336–3346. [Google Scholar]
- Ruiz, J.L.; Frey, C.H. Geosynchronous Satellite Use of GPS. In Proceedings of the 18th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, USA, 13–16 September 2005; pp. 1227–1232. [Google Scholar]
- Force, D.A.; Miller, J.J. Combined Global Navigation Satellite Systems in the Space Service Volume. In Proceedings of the International Technical Meeting 2013, San Diego, CA, USA, 27–29 January 2013. [Google Scholar]
- Rathinam, A.; Dempster, A.G. Effective utilization of space service volume through combined GNSS. In Proceedings of the 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016), Portland, OR, USA, 12–16 September 2016. [Google Scholar]
- Guasch, J.R.; Weigand, R.; Risueño, G.L.; Silvestrin, P. AGGA-4-Core device for GNSS space-receivers of the next decade. In Proceedings of the NAVITEC, Noordwijk, The Netherlands, 10–12 December 2008; pp. 1–8. [Google Scholar]
- Lulich, T.D.; Bamford, W.A.; Winternitz, L.M.B.; Price, S.R. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission. In Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012; pp. 731–742. [Google Scholar]
- Mehlen, C.; Laurichesse, D. Real-time GEO orbit determination using TOPSTAR 3000 GPS receiver. In Proceedings of the 13th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2000), Salt Lake City, UT, USA, 19–22 September 2000; pp. 1985–1994. [Google Scholar]
- Zin, A.; Scotti, M.; Mangolini, E.; Cappelluti, I.; Fiordiponti, R.; Amalric, J.; Flament, P.; Brouillard, E.; Kowaltschek, S. Preparing an autonomous, low-cost GNSS positioning and timing function on board a GEO telecom mission: A study case. CEAS Space J. 2015, 7, 247–262. [Google Scholar] [CrossRef]
- Balbach, O.; Eissfeller, B.; Hein, G.W.; Enderle, W.; Schmidhuber, M.; Lemke, N. Tracking GPS above GPS satellite Altitude: First Results of the GPS Experiment on the HEO Mission Equator-S. In Proceedings of the IEEE PLANS 1998, Savannah, GA, USA, 11–16 April 1998; pp. 243–249. [Google Scholar]
- Moreau, M.C.; Bauer, F.H.; Carpenter, J.R. Preliminary Results of the GPS Flight Experiment on the High Earth Orbit AMSAT-OSCAR 40 Spacecraft. In Proceedings of the 25th Annual AAS Guidance and Control Conference, Breckenridge, CO, USA, 6–10 February 2002; pp. 1–15. [Google Scholar]
- Moreau, M.C.; Davis, E.P.; Carpenter, J.R.; Kelbel, D.; Davis, G.W.; Axelrad, P. Results from the GPS Flight Experiment on the High Earth Orbit AMSAT OSCAR-40 Spacecraft. In Proceedings of the 15th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2002), Portland, OR, USA, 24–27 September 2002; pp. 122–133. [Google Scholar]
- Davis, G.; Moreau, M.; Carpenter, R.; Bauer, F. GPS-Based Navigation and Orbit Determination for AMSAT AO-40 Satellite. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, USA, 5–8 August 2002. [Google Scholar]
- Palmerini, G.B.; Sabatini, M.; Perrotta, G. En route to the Moon using GNSS signals. Acta Astronaut. 2009, 64, 467–483. [Google Scholar] [CrossRef]
- Capuano, V.; Botteron, C.; Leclère, J.; Tian, J.; Wang, Y.; Farine, P.-A. Feasibility study of GNSS as navigation system to reach the Moon. Acta Astronaut. 2015, 116, 186–201. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, R.; Wang, J.; Wang, D.; Guo, H. Injected transfer orbit determination of lunar probe Chang’E 5T1 using short-arc rocket GPS measurements. Adv. Space Res. 2015, 56, 1726–1736. [Google Scholar] [CrossRef]
- Fan, M.; Hu, X.; Dong, G.; Huang, Y.; Cao, J.; Tang, C.; Li, P.; Chang, S.; Yu, Y. Orbit improvement for Chang’E-5T lunar returning probe with GNSS technique. Adv. Space Res. 2015, 56, 2473–2482. [Google Scholar] [CrossRef]
- Hartinger, H.; Brunner, F.K. Variances of GPS Phase Observations: The SIGMA-ε Model. GPS Solut. 1999, 2, 35–43. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Hu, S.; Tang, G.; Li, X. Orbit determination for CE5T based upon GPS data. Syst. Eng. Electron. 2016, 38, 1121–1125. [Google Scholar]
- Shi, C.; Zhao, Q.; Hu, Z.; Liu, J. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solut. 2013, 17, 103–119. [Google Scholar] [CrossRef]
- Kusche, J. A Monte-Carlo technique for weight estimation in satellite geodesy. J. Geod. 2003, 76, 641–652. [Google Scholar] [CrossRef]
- Rebischung, P.; Griffiths, J.; Ray, J.; Schmid, R.; Collilieux, X.; Garayt, B. IGS08: The IGS realization of ITRF2008. GPS Solut. 2011, 16, 483–494. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, Q.; Zhao, Q.; Guo, J. Precise Orbit Determination for LEO Satellites Using Single-frequency GPS Observations. Chin. Space Sci. Technol. 2013, 33, 41–46. [Google Scholar]
- McCarthy, D.D.; Petit, G. IERS Conventions (2003); Bundesamt fuer Kartographie und Geodaesie: Frankfurt am Main, Germany, 2003. [Google Scholar]
- Springer, T.A.; Beutler, G.; Rothacher, M. A new solar radiation pressure model for GPS. GPS Solut. 1999, 2, 50–62. [Google Scholar] [CrossRef]
- Bisnath, S.; Langley, R. High-precision, kinematic positioning with a single GPS receiver. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, USA, 11–14 September 2001; pp. 161–170. [Google Scholar]
Parameters | Design Parameter |
---|---|
Compatible frequency | GPS L1 and GLONASS L1 |
Original observation types | carrier phase, pseudo-range, Doppler and C/N0 |
Number of channels | 16 for GPS, 8 for GLONASS |
Sampling rate | 3 s for ascent arc, 1 s for return arc |
Acquisition sensitivity threshold | 29 dB-Hz |
Tracking sensitivity threshold | 26 dB-Hz |
GNSS Antenna | 2, quadrifilar helix, earth-pointing and the opposite direction |
Items | Models |
---|---|
Estimator | Least-squares estimation |
Observations selection | GPS L1 and C1 |
Sampling rate | 3 s |
Phase-windup effect | Phase polarization effects applied |
GPS Satellite antenna phase center model (PCO and PCV) | Corrected using GPS values |
GPS Satellite orbit | Fixed in IGS final orbit |
GPS Satellite clock | Fixed in IGS final 30 s interval clock |
Chang’E-5T Receiver clock | Estimated as random walk process |
Precession and nutation | IAU 2000 precession and nutation model |
EOP parameters | Polar motions and UT1 from IERS C04 series aligned to ITRF 2008 |
Troposphere and Ionosphere | None |
Geopotential (static) | EIGEN_GL04C up to 50 × 50 |
Solid earth tide/Ocean tide/Solid earth pole tide/Relativistic effect | IERS Conventions 2003 [35] |
M-body gravity | Sun, Moon, Jupiter, Venus, Mars, Mercury, Uranus, Neptune, Saturn, Pluto. JPL DE405 ephemeris used |
Solar radiation pressure model | ECOM model 5-parameter with no initial value [36] |
Phase ambiguities | Real constant value for each ambiguity arc |
C/N0 | Along-Track | Cross-Track | Radial | 3D |
---|---|---|---|---|
28 | 2.86 | 1.77 | 1.34 | 3.62 |
31 | 7.15 | 3.35 | 5.08 | 9.39 |
34 | 36.03 | 2.21 | 36.93 | 51.65 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, X.; Geng, T.; Li, W.; Zhao, Q.; Xie, X. Chang’E-5T Orbit Determination Using Onboard GPS Observations. Sensors 2017, 17, 1260. https://doi.org/10.3390/s17061260
Su X, Geng T, Li W, Zhao Q, Xie X. Chang’E-5T Orbit Determination Using Onboard GPS Observations. Sensors. 2017; 17(6):1260. https://doi.org/10.3390/s17061260
Chicago/Turabian StyleSu, Xing, Tao Geng, Wenwen Li, Qile Zhao, and Xin Xie. 2017. "Chang’E-5T Orbit Determination Using Onboard GPS Observations" Sensors 17, no. 6: 1260. https://doi.org/10.3390/s17061260
APA StyleSu, X., Geng, T., Li, W., Zhao, Q., & Xie, X. (2017). Chang’E-5T Orbit Determination Using Onboard GPS Observations. Sensors, 17(6), 1260. https://doi.org/10.3390/s17061260