A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network
Abstract
:1. Introduction
2. Overview of the Proposed Solution
3. Proposed IMM-UKF Algorithm
3.1. Motion Model
- , is the Earth’s rotation rate,
- is the latitude of the vehicle position,
- is the altitude,
- is the normal radius of curvature of the Earth.
3.2. Observation Model
3.3. Implementation of the Proposed Algorithm
4. Design the GNN Module
- LA layer:
- LB layer:
- LC layer: , ,
- LD layer:
5. Experiments and Results
5.1. Equipment and Road Trajectories
5.2. Test 1: Performance Evaluation of the Proposed Localization Solution in Trajectories 1
5.3. Test 2: Further Evaluation of the Proposed Localization Solution
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hatano, H.; Kitani, T.; Fujii, M.; Member, S.; Ito, A. Positioning Method by Two GNSS Satellites and Distance Sensor in Urban Area. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2015, 98, 275–283. [Google Scholar] [CrossRef]
- Cui, D.; Xue, J.; Zheng, N. Real-Time Global Localization of Robotic Cars in Lane Level via Lane Marking Detection and Shape Registration. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1039–1050. [Google Scholar] [CrossRef]
- Gu, Y.; Hsu, L.T.; Bao, J.; Kamijo, S. Integrating Global Navigation Satellite System and Road-Marking Detection for Vehicle Localization in Urban Traffic. Transp. Res. Rec. J. Transp. Res. Board 2016, 2595, 59–67. [Google Scholar] [CrossRef]
- Zhao, L.; Qiu, H.; Feng, Y. Study of Robust H∞ Filtering Application in Loosely Coupled INS/GPS System. Math. Probl. Eng. 2014, 2014, 1–10. [Google Scholar]
- Adusumilli, S.; Bhatt, D.; Wang, H.; Bhattacharya, P.; Devabhaktuni, V. Expert Systems with Applications A low-cost INS/GPS integration methodology based on random forest regression. Expert Syst. Appl. 2013, 40, 4653–4659. [Google Scholar] [CrossRef]
- Vu, A.; Member, S.; Ramanandan, A.; Chen, A.; Farrell, J.A.; Barth, M.; Member, S. Real-Time Computer Vision/DGPS-Aided Inertial Navigation System for Lane-Level Vehicle Navigation. IEEE Trans. Intell. Transp. Syst. 2012, 13, 899–913. [Google Scholar] [CrossRef]
- Georgy, J.; Noureldin, A.; Member, S.; Korenberg, M.J.; Bayoumi, M.M. Modeling the Stochastic Drift of a MEMS-Based Gyroscope in Gyro/Odometer/GPS Integrated Navigation. IEEE Trans. Intell. Transp. Syst. 2010, 11, 856–872. [Google Scholar] [CrossRef]
- Quinchia, A.G.; Falco, G.; Falletti, E.; Dovis, F.; Ferrer, C.; Superiore, I.; Boella, M.A. Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems. Sensors 2013, 13, 9549–9588. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nassar, S.; El-sheimy, N. Two-Filter Smoothing for Accurate INS/GPS Land-Vehicle Navigation in Urban Centers. IEEE Trans. Veh. Technol. 2010, 59, 4256–4267. [Google Scholar] [CrossRef]
- Georgy, J.; Noureldin, A.; Korenberg, M.J.; Bayoumi, M.M. Low-cost three-dimensional navigation solution for RISS/GPS integration using mixture particle filter. IEEE Trans. Veh. Technol. 2010, 59, 599–615. [Google Scholar] [CrossRef]
- Han, S.; Wang, J. Land Vehicle Navigation with the Integration of GPS and Reduced INS : Performance Improvement with Velocity Aiding. J. Navig. 2010, 63, 153–166. [Google Scholar] [CrossRef]
- Van der Merwe, R.; Wan, E.A.; Julier, S.J. Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion: Applications to Integrated Navigation. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Boston, MA, USA, 19–22 August 2013; pp. 1–30. [Google Scholar]
- Kong, J.H.; Mao, X.; Li, S. BDS/GPS dual systems positioning based on the modified SR-UKF algorithm. Sensors 2016, 16, 635. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Chen, Z.; Yin, F. Distributed IMM-Unscented Kalman Filter for Speaker Tracking in Microphone Array Networks. IEEE/ACM Trans. Audio Speech Lang. Process. 2015, 23, 1637–1647. [Google Scholar] [CrossRef]
- De Marina, H.G.; Pereda, F.J.; Giron-Sierra, J.M.; Espinosa, F. UAV attitude estimation using unscented kalman filter and TRIAD. IEEE Trans. Ind. Electron. 2012, 59, 4465–4474. [Google Scholar] [CrossRef]
- Feng, B.; Fu, M.; Ma, H.; Xia, Y.; Wang, B. Kalman Filter With Recursive Covariance Estimation—Sequentially Estimating Process Noise Covariance. IEEE Trans. Ind. Electron. 2014, 61, 6253–6263. [Google Scholar] [CrossRef]
- Bavdekar, V.A.; Deshpande, A.P.; Patwardhan, S.C. Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. J. Process Control 2011, 21, 585–601. [Google Scholar] [CrossRef]
- Young, J.; Hee, L.; Kim, S.; Ho, K. Adaptive GPS/INS integration for relative navigation. GPS Solut. 2016, 20, 63–75. [Google Scholar]
- Li, W.; Gong, D.; Liu, M.; Chen, J.; Duan, D. Adaptive robust Kalman filter for relative navigation using global position system. IET Radar Sonar Navig. 2013, 7, 471–479. [Google Scholar] [CrossRef]
- Jwo, D.; Lai, S. Navigation Integration Using the Fuzzy Strong Tracking Unscented Kalman Filter. J. Navig. 2009, 62, 303–322. [Google Scholar] [CrossRef]
- Ndjeng, A.N.; Gruyer, D.; Glaser, S.; Lambert, A. Low cost IMU–Odometer–GPS ego localization for unusual maneuvers. Inf. Fusion 2011, 12, 264–274. [Google Scholar] [CrossRef]
- Jo, K.; Member, S.; Chu, K.; Member, S.; Sunwoo, M. Interacting Multiple Model Filter-Based Sensor Fusion of GPS with In-Vehicle Sensors for Real-Time Vehicle Positioning. IEEE Trans. Intell. Transp. Syst. 2012, 13, 329–343. [Google Scholar] [CrossRef]
- Jwo, D.; Chen, M.; Tseng, C. Interacting Multiple Model Adaptive Unscented Kalman Filters for Navigation. In Proceedings of the 27th International Congress of the Aeronautical Sciences, Nice, France, 19–24 September 2010; pp. 1–10. [Google Scholar]
- Navigation, I.; Fusion, S. Fuzzy Adaptive Interacting Multiple Model Nonlinear Filter for Integrated Navigation Sensor Fusion. Sensors 2011, 11, 2090–2111. [Google Scholar]
- Pandremenos, J.; Chryssolouris, G. A neural network approach for the development of modular product architectures. Int. J. Comput. Integr. Manuf. 2011, 24, 879–887. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, X. A new method of seamless land navigation for GPS/INS integrated system. Measurement 2012, 45, 691–701. [Google Scholar] [CrossRef]
- Bhatt, D.; Aggarwal, P.; Devabhaktuni, V.; Bhattacharya, P. A novel hybrid fusion algorithm to bridge the period of GPS outages using low-cost INS. Expert Syst. Appl. 2014, 41, 2166–2173. [Google Scholar] [CrossRef]
- Sharaf, R.; Noureldin, A. Sensor Integration for Satellite-Based Vehicular Navigation Using Neural Networks. IEEE Trans. Neural Netw. 2007, 18, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Noureldin, A.; El-Shafie, A.; Bayoumi, M. GPS/INS integration utilizing dynamic neural networks for vehicular navigation. Inf. Fusion 2011, 12, 48–57. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Jiang, H. Machine tool thermal error modeling and prediction by grey neural network. Int. J. Adv. Manuf. Technol. 2012, 59, 1065–1072. [Google Scholar] [CrossRef]
- Li, T.; Zhao, D.; Huang, Z.; Liu, C.; Su, S. A wavelet-based grey particle filter for self-estimating the trajectory of manoeuvring autonomous underwater vehicle. Trans. Inst. Meas. Control 2013, 36, 321–335. [Google Scholar]
- Guo, Z.H.; Wu, J.; Lu, H.Y.; Wang, J.Z. A case study on a hybrid wind speed forecasting method using BP neural network. Knowl.-Based Syst. 2011, 24, 1048–1056. [Google Scholar] [CrossRef]
- Lin, W.; Mei, A.K. Application of grey model neural network in performing financial characteristic study of enterprises in Taiwan. J. Stat. Manag. Syst. 2011, 14, 751–766. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Chan, C. A reliable multisensor fusion strategy for land vehicle positioning using low-cost sensors. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2014, 228, 1375–1397. [Google Scholar] [CrossRef]
- Noureldin, A.; Karamat, T.B.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-Based Localization and Their Integration; Springer: Berlin, Germany, 2012; pp. 282–284. [Google Scholar]
- Godha, S.; Cannon, M.E. GPS/MEMS INS integrated system for navigation in urban areas. GPS Solut. 2007, 11, 193–203. [Google Scholar] [CrossRef]
- Beal, C.E.; Gerdes, J.C. Model predictive control for vehicle stabilization at the limits of handling. IEEE Trans. Control Syst. Technol. 2013, 21, 1258–1269. [Google Scholar] [CrossRef]
- Arioui, H.; Hima, S.; Nehaoua, L.; Bertin, R.J.; Espi, S. From design to experiments of a 2-DOF vehicle driving simulator. IEEE Trans. Veh. Technol. 2011, 60, 357–368. [Google Scholar] [CrossRef]
- Mourikis, A.I.; Roumeliotis, S.I. A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007. [Google Scholar]
- Huang, Y.W.; Chiang, K.W. An intelligent and autonomous MEMS IMU/GPS integration scheme for low cost land navigation applications. GPS Solut. 2008, 12, 135–146. [Google Scholar] [CrossRef]
- Chang, H.; Xue, L.; Qin, W.; Yuan, G.; Yuan, W. An Integrated MEMS Gyroscope Array with Higher Accuracy Output. Sensors 2008, 8, 2886–2899. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.W.; Lin, W.Y.; Huang, T.H.; Pan, W.T. Using fruit fly optimization algorithm optimized grey model neural network to perform satisfaction analysis for e-business service. Appl. Math. Inf. Sci. 2013, 7, 459–465. [Google Scholar] [CrossRef]
Outage Number | Maximum Error (m) | |||
---|---|---|---|---|
UKF | IMM-UKF | IMM-UKF-RBF | IMM-UKF-GNN | |
1 | 26.32 | 24.62 | 5.24 | 3.91 |
2 | 55.20 | 46.94 | 16.21 | 15.82 |
3 | 64.62 | 56.76 | 17.92 | 10.29 |
4 | 53.64 | 51.74 | 17.20 | 9.28 |
5 | 59.98 | 51.76 | 12.28 | 7.83 |
6 | 26.13 | 23.83 | 11.66 | 8.21 |
Outage Number | RMS Error (m) | |||
---|---|---|---|---|
UKF | IMM-UKF | IMM-UKF-RBF | IMM-UKF-GNN | |
1 | 6.31 | 5.42 | 1.22 | 1.18 |
2 | 13.84 | 12.96 | 7.69 | 7.41 |
3 | 21.41 | 16.43 | 4.72 | 3.02 |
4 | 16.54 | 14.34 | 5.86 | 2.84 |
5 | 18.41 | 14.23 | 2.81 | 1.79 |
6 | 7.95 | 7.81 | 3.71 | 2.31 |
Outage Number | Maximum Error (m) | |||
---|---|---|---|---|
UKF | IMM-UKF | IMM-UKF-RBF | IMM-UKF-GNN | |
1 | 31.79 | 25.77 | 6.84 | 4.35 |
2 | 62.37 | 47.23 | 17.38 | 16.13 |
3 | 71.31 | 57.20 | 21.52 | 11.77 |
4 | 61.17 | 53.63 | 21.62 | 12.85 |
5 | 67.44 | 54.14 | 14.16 | 8.15 |
6 | 32.62 | 25.39 | 13.98 | 9.71 |
Outage Number | RMS Error (m) | |||
---|---|---|---|---|
UKF | IMM-UKF | IMM-UKF-RBF | IMM-UKF-GNN | |
1 | 7.36 | 6.03 | 1.84 | 1.45 |
2 | 15.58 | 13.21 | 8.26 | 7.73 |
3 | 22.47 | 17.19 | 5.45 | 3.53 |
4 | 17.28 | 14.57 | 6.34 | 3.22 |
5 | 20.02 | 15.09 | 2.66 | 1.66 |
6 | 9.33 | 8.10 | 4.38 | 2.89 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Li, X.; Chan, C.-Y. A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network. Sensors 2017, 17, 1431. https://doi.org/10.3390/s17061431
Xu Q, Li X, Chan C-Y. A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network. Sensors. 2017; 17(6):1431. https://doi.org/10.3390/s17061431
Chicago/Turabian StyleXu, Qimin, Xu Li, and Ching-Yao Chan. 2017. "A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network" Sensors 17, no. 6: 1431. https://doi.org/10.3390/s17061431
APA StyleXu, Q., Li, X., & Chan, C. -Y. (2017). A Cost-Effective Vehicle Localization Solution Using an Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) Algorithm and Grey Neural Network. Sensors, 17(6), 1431. https://doi.org/10.3390/s17061431