An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition
Abstract
:1. Introduction
2. Part 1: Investigation of Effectiveness of Different Adaptive Pattern Recognition Algorithms
2.1. Method and Materials
2.1.1. Experiment Participants and Data Collection
2.1.2. Experimental Protocol
2.1.3. Locomotion Mode Recognition Algorithm
2.1.4. Adaptive Classification Strategies
2.1.5. Evaluation of Effectiveness of Adaptive Strategies
2.2. Results for Part 1
2.3. Discussion about Part 1
3. Part 2: Online Evaluation of Adaptive Locomotion Mode Recognition for Reliable Prosthesis Control
3.1. Methods and Materials
3.1.1. Participant and Experimental Setup
3.1.2. Experimental Protocol
3.1.3. Evaluation Approaches
3.2. Results of Part 2
3.3. Discussion for Part 2
4. Limitation and Future Work
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Merletti, R.; Parker, P.A. Electromyography: Physiology, Engineering, and Non-Invasive Applications; John Wiley & Sons: Chichester, UK, 2004; Volume 11. [Google Scholar]
- Park, S.-H.; Lee, S.-P. EMG pattern recognition based on artificial intelligence techniques. IEEE Trans. Rehabil. Eng. 1998, 6, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Englehart, K.; Hudgins, B. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 2003, 50, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Lowery, M.M.; Englehart, K.B.; Huang, H.; Li, G.; Hargrove, L.; Dewald, J.P.; Kuiken, T.A. Decoding a new neural–machine interface for control of artificial limbs. J. Neurophysiol. 2007, 98, 2974–2982. [Google Scholar] [CrossRef] [PubMed]
- Momen, K.; Krishnan, S.; Chau, T. Real-time classification of forearm electromyographic signals corresponding to user-selected intentional movements for multifunction prosthesis control. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.-U.; Moon, I.; Mun, M.-S. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand. IEEE Trans. Biomed. Eng. 2006, 53, 2232–2239. [Google Scholar] [PubMed]
- Ha, K.H.; Varol, H.A.; Goldfarb, M. Volitional control of a prosthetic knee using surface electromyography. IEEE Trans. Biomed. Eng. 2011, 58, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhang, F.; Hargrove, L.J.; Dou, Z.; Rogers, D.R.; Englehart, K.B. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans. Biomed. Eng. 2011, 58, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Au, S.; Berniker, M.; Herr, H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008, 21, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Kuiken, T.A.; Lipschutz, R.D. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans. Biomed. Eng. 2009, 56, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sun, Y.L.; Yang, Q.; Zhang, F.; Zhang, X.; Liu, Y.; Ren, J.; Sierra, F. Integrating Neuromuscular and Cyber Systems for Neural Control of Artificial Legs. In Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, Stockholm, Sweden, 12–14 April 2010; pp. 129–138. [Google Scholar]
- Zhang, F.; Huang, H. Source selection for real-time user intent recognition toward volitional control of artificial legs. IEEE J. Biomed. Health Inform. 2013, 17, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, M.; Harper, S.; Lee, M.; Huang, H. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis. J. Vis. Exp. 2014, 89, 51059. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, L.J.; Young, A.J.; Simon, A.M.; Fey, N.P.; Lipschutz, R.D.; Finucane, S.B.; Halsne, E.G.; Ingraham, K.A.; Kuiken, T.A. Intuitive control of a powered prosthetic leg during ambulation: A randomized clinical trial. J. Am. Med. Assoc. 2015, 313, 2244–2252. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Sun, S.; Wang, Z.; Wang, Q.; Wang, L. A Fuzzy Logic Based Terrain Identification Approach to Prosthesis Control Using Multi-Sensor Fusion. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 3376–3381. [Google Scholar]
- Childers, W.L.; Prilutsky, B.I.; Gregor, R.J. Motor adaptation to prosthetic cycling in people with trans-tibial amputation. J. Biomech. 2014, 47, 2306–2313. [Google Scholar] [CrossRef] [PubMed]
- Vigreux, B.; Cnockaert, J.; Pertuzon, E. Factors influencing quantified surface EMGs. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 41, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Campanini, I.; Merlo, A.; Degola, P.; Merletti, R.; Vezzosi, G.; Farina, D. Effect of electrode location on EMG signal envelope in leg muscles during gait. J. Electromyogr. Kinesiol. 2007, 17, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Rainoldi, A.; Nazzaro, M.; Merletti, R.; Farina, D.; Caruso, I.; Gaudenti, S. Geometrical factors in surface EMG of the vastus medialis and lateralis muscles. J. Electromyogr. Kinesiol. 2000, 10, 327–336. [Google Scholar] [CrossRef]
- Tkach, D.; Huang, H.; Kuiken, T.A. Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 2010, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Doud, J.; Walsh, J. Muscle fatigue and muscle length interaction: Effect on the EMG frequency components. Electromyogr. Clin. Neurophysiol. 1995, 35, 331–339. [Google Scholar] [PubMed]
- Jordanić, M.; Rojas-Martínez, M.; Mañanas, M.A.; Alonso, J.F.; Marateb, H.R. A Novel Spatial Feature for the Identification of Motor Tasks Using High-Density Electromyography. Sensors 2017, 17, 1597. [Google Scholar] [CrossRef] [PubMed]
- Hargrove, L.; Englehart, K.; Hudgins, B. A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomed. Signal Process. Control 2008, 3, 175–180. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, F.; Sun, Y.L.; He, H. Design of a robust EMG sensing interface for pattern classification. J. Neural Eng. 2010, 7, 056005. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, D.; Yu, W.; Maruishi, M.; Watanabe, I.; Yokoi, H.; Kakazu, Y. On-line learning based electromyogram to forearm motion classifier with motor skill evaluation. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2000, 43, 906–915. [Google Scholar] [CrossRef]
- Fukuda, O.; Tsuji, T.; Kaneko, M.; Otsuka, A. A human-assisting manipulator teleoperated by EMG signals and arm motions. IEEE Trans. Robot. Autom. 2003, 19, 210–222. [Google Scholar] [CrossRef]
- Sensinger, J.W.; Lock, B.A.; Kuiken, T.A. Adaptive pattern recognition of myoelectric signals: Exploration of conceptual framework and practical algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, J.; Zhang, D.; Sheng, X.; Jiang, N. Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Yang, D.; Jiang, L.; Zhang, H.; Liu, H.; Kotani, K. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition. Sensors 2017, 17, 1370. [Google Scholar] [CrossRef] [PubMed]
- Spanias, J.A.; Simon, A.M.; Perreault, E.J.; Hargrove, L.J. Preliminary Results for an Adaptive Pattern Recognition System for Novel Users Using a Powered Lower Limb Prosthesis. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 5083–5086. [Google Scholar]
- Liu, M.; Zhang, F.; Datseris, P.; Huang, H.H. Improving finite state impedance control of active-transfemoral prosthesis using dempster-shafer based state transition rules. J. Intell. Robot. Syst. 2014, 76, 461–474. [Google Scholar] [CrossRef]
- Perotto, A.O. Anatomical Guide for the Electromyographer: The Limbs and Trunk; Charles C Thomas Publisher: Springfield, IL, USA, 2011. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification; John Wiley & Sons Wiley: New York, NY, USA, 1973. [Google Scholar]
- Cao, Y.; He, H.; Huang, H.H. LIFT: A new framework of learning from testing data for face recognition. Neurocomputing 2011, 74, 916–929. [Google Scholar] [CrossRef]
- Bruzzone, L.; Mingmin, C.; Marconcini, M. A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3363–3373. [Google Scholar] [CrossRef]
- Lin, H.-T.; Lin, C.-J.; Weng, R.C. A note on Platt’s probabilistic outputs for support vector machines. Mach. Learn. 2007, 68, 267–276. [Google Scholar] [CrossRef]
- Du, L.; Zhang, F.; He, H.; Huang, H. Improving the Performance of a Neural-Machine Interface for Prosthetic Legs Using Adaptive Pattern Classifiers. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 1571–1574. [Google Scholar]
- Liao, X.; Yao, D.; Li, C. Transductive SVM for reducing the training effort in BCI. J. Neural Eng. 2007, 4, 246. [Google Scholar] [CrossRef] [PubMed]
- Bruzzone, L.; Marconcini, M. Toward the Automatic Updating of Land-Cover Maps by a Domain-Adaptation SVM Classifier and a Circular Validation Strategy. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1108–1122. [Google Scholar] [CrossRef]
- Hargrove, L.J.; Simon, A.M.; Young, A.J.; Lipschutz, R.D.; Finucane, S.B.; Smith, D.G.; Kuiken, T.A. Robotic leg control with EMG decoding in an amputee with nerve transfers. N. Engl. J. Med. 2013, 369, 1237–1242. [Google Scholar] [CrossRef] [PubMed]
- Lock, B.A.; Englehart, K.; Hudgins, B. Real-Time Myoelectric Control in a Virtual Environment to Relate Usability vs. Accuracy. In Proceedings of the MEC’05 conference, Fredericton, NB, Canada, 17–19 August 2005; pp. 111–114. [Google Scholar]
- Zhang, F.; Liu, M.; Huang, H. Investigation of timing to switch control mode in powered knee prostheses during task transitions. PLoS ONE 2015, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhou, J. A Review of Adaptive Feature Extraction and Classification Methods for EEG-Based Brain-Computer Interfaces. In Proceedings of the 2014 IEEE International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 1746–1753. [Google Scholar]
- Gheisari, M.; Baghshah, M.S. Unsupervised domain adaptation via representation learning and adaptive classifier learning. Neurocomputing 2015, 165, 300–311. [Google Scholar] [CrossRef]
- Chorowski, J.; Wang, J.; Zurada, J.M. Review and performance comparison of SVM-and ELM-based classifiers. Neurocomputing 2014, 128, 507–516. [Google Scholar] [CrossRef]
Age | Weight (kg) | Height (cm) | Gender | Years Post-Amputation | Residual Limb Length Ratio * | Daily-Use Prosthesis | |
---|---|---|---|---|---|---|---|
AB01 | 38 | 70.0 | 175.8 | M | - | - | - |
AB02 | 28 | 84.5 | 181.0 | M | - | - | - |
TF01 | 59 | 75.1 | 173.5 | M | 23 | 49% | RHEO |
TF02 | 21 | 61.2 | 180.0 | M | 5 | 52% | Genium |
Number of Missed Transitions | AB01 | AB02 | TF01 |
---|---|---|---|
No Adaptation | 12.5% | 10% | 15% |
Entropy-based Adaptation | 5% | 6.25% | 3.75% |
LIFT Adaptation | 5% | 6.25% | 3.75% |
TSVM Adaptation | 3.75% | 7.5% | 7.5% |
Adaptive Trials | Non-Adaptive Trials | |
---|---|---|
Number of Missed Task Transitions | 2 | 7 |
Number of Unstable Disturbance Elicited by Recognition Errors | 0 | 4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, F.; Huang, H. An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition. Sensors 2017, 17, 2020. https://doi.org/10.3390/s17092020
Liu M, Zhang F, Huang H. An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition. Sensors. 2017; 17(9):2020. https://doi.org/10.3390/s17092020
Chicago/Turabian StyleLiu, Ming, Fan Zhang, and He (Helen) Huang. 2017. "An Adaptive Classification Strategy for Reliable Locomotion Mode Recognition" Sensors 17, no. 9: 2020. https://doi.org/10.3390/s17092020