Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Image Acquisition and Preprocessing
3.2. Field Data Collection
3.3. Variable Importance Measure and Classification
3.4. Accuracy Assessment
4. Results
4.1. Parameterization of the Random Forest Classifiers
4.2. Spectral Variable Importance for Crop Systems Mapping
4.3. Maize Cropping Systems Mapping
4.4. Classification Accuracies
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rockstrom, J. Water for food and nature in drought prone tropics: Vapour shift in rainfed agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 1997–2009. [Google Scholar] [CrossRef] [PubMed]
- Mersha, A.A.; Van Laerhoven, F. A gender approach to understanding the differentiated impact of barriers to adaptation: Responses to climate change in rural Ethiopia. Reg. Environ. Chang. 2016, 16, 1701–1713. [Google Scholar] [CrossRef]
- Edgerton, M.D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Antle, J.M.; Basso, B.; Conant, R.T.; Godfray, H.C.J.; Jones, J.W.; Herrero, M.; Howitt, R.E.; Keating, B.A.; Munoz, R.; Rosenzweig, C.; et al. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agric. Syst. 2016, 155, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, S.; Manjunath, K.R.; Ray, S.S. Deriving cropping system performance indices using remote sensing data and Gis. Int. J. Remote Sens. 2005, 26, 2595–2606. [Google Scholar] [CrossRef]
- Callaghana, J.R.O.; Maende, C.; Wyseure, G. Modelling the intercropping of maize and beans in Kenya. Comput. Electron. Agric. 1994, 11, 351–365. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Jin, X.; Bao, X.-G.; Li, X.-F.; Zhao, J.-H.; Sun, J.-H.; Christie, P.; Li, L. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping. PLoS ONE 2014, 9, e113984. [Google Scholar] [CrossRef] [PubMed]
- Forkuor, G.; Conrad, C.; Thiel, M.; Landmann, T.; Barry, B. Evaluating the sequential masking classification approach for improving crop discrimination in the Sudanian Savanna of West Africa. Comput. Electron. Agric. 2015, 118, 380–389. [Google Scholar] [CrossRef]
- Sibanda, M.; Murwira, A. The use of multi-temporal MODIS images with ground data to distinguish cotton from maize and sorghum fields in smallholder agricultural landscapes of Southern Africa. Int. J. Remote Sens. 2011, 33, 4841–4855. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of optical and synthetic aperture radar imagery for improving crop mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472–6499. [Google Scholar] [CrossRef] [Green Version]
- Woomer, P.L.; Bekuna, M.A.; Karanja, N.K.; Moorehouse, T.; Okalebo, R. Agricultural resource management by smallhold farmers in East Africa. Nat. Resour. 1997, 34, 22–33. [Google Scholar]
- Conrad, C.; Colditz, R.; Dech, S.; Klein, D.; Vlek, P.L.G. Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems. Int. J. Remote Sens. 2011, 32, 8763–8778. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Mbow, C.; Frost, P.; Loveland, T. Accessing free Landsat data via the internet: Africa’s challenge. Remote Sens. Lett. 2010, 1, 111–117. [Google Scholar] [CrossRef]
- Husak, G.J.; Marshall, M.T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G.C.D. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography. J. Geophys. Res. Atmos. 2008, 113, 1–8. [Google Scholar] [CrossRef]
- Conrad, C.; Machwitz, M.; Schorcht, G.; Löw, F.; Fritsch, S.; Dech, S. Potentials of rapideye time series for improved classification of crop rotations in heterogeneous agricultural landscapes: Experiences from irrigation systems in central Asia. In Proceedings of the SPIE Remote Sensing, Prague, Czech Republic, 19–22 September 2011; pp. 19–22. [Google Scholar]
- Cord, A.; Conrad, C.; Schmidt, M.; Dech, S. Standardized FAO-LCCS land cover mapping in heterogeneous tree savannas of West Africa. J. Arid Environ. 2010, 74, 1083–1091. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Vierling, L.A.; Litvak, M.E.; Long, D.S.; Schulthess, U.; Ager, A.A.; Krofcheck, D.J.; Stoscheck, L. Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sens. Environ. 2011, 115, 3640–3646. [Google Scholar] [CrossRef]
- Schuster, C.; Forester, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. Int. J. Remote Sens. 2012, 33, 5583–5599. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T.; Hostert, P. Urban vegetation classification: Benefits of multi-temporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Mulianga, B.; Begue, A.; Clouvel, P.; Todoroff, P. Mapping cropping practices of a sugarcane-based cropping system in Kenya using remote sensing. Remote Sens. 2015, 7, 14428–14444. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, E.M.; Ahmed, F.B. The application of remote sensing techniques to sugarcane (Saccharum spp. Hybrid) production: A review of the literature. Int. J. Remote Sens. 2008, 29, 3753–3767. [Google Scholar] [CrossRef]
- Ramert, B.; Lennartsson, M.; Davies, G. The use of mixed species cropping to manage pests and diseases—Theory and practice. In Proceedings of the UK Organic Research Conference, Aberystwyth, Wales, 26–28 March 2002; pp. 207–210. [Google Scholar]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting agriculture to climate change in Kenya: Household strategies and determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, E.W.; Mundia, C.N. Assessing and monitoring agriculture crop production for improved food security in Machakos County. Int. J. Sci. Res. 2014, 3, 555–559. [Google Scholar]
- Macharia, P. Gateway to Land and Water Information: Kenya National Report. Fao (Food and Agriculture Organization). Available online: http://www.fao.org/ag/agL/swlwpnr/reports/y_sf/z_ke/ke.htm (accessed on 18 November 2016).
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Richter, R. Correction of atmospheric and topographic effects for high spatial resolution satellite imagery. Int. J. Remote Sens. 1997, 18, 1099–1111. [Google Scholar] [CrossRef]
- El-Shikha, D.M.; Barnes, E.M.; Clarke, T.R.; Hunsaker, D.J.; Haberland, J.A.; Pinter, P.J.; Waller, P.M.; Thompson, T.L. Remote sensing of cotton nitrogen status using the canopy chlorophyll content index (ccci). Trans. ASABE 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Cafiero, G.; Marino, S.; Alvino, A. Cultivar discrimination at different site elevations with remotely sensed vegetation indices. Ital. J. Agron. 2011, 6, 1–5. [Google Scholar] [CrossRef]
- Strachan, I.B.; Pattey, E.; Boisvert, J.B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sens. Environ. 2002, 80, 213–224. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Yu, Q. Comparative analysis of EO-1 ALI and hyperion, and Landsat ETM+ Data for mapping forest crown closure and leaf area index. Sensors 2008, 8, 3744–3766. [Google Scholar] [CrossRef] [PubMed]
- Roujean, J.; Breon, F. Estimating par absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Birth, G.; McVey, G. Measuring the color of growing turf with a reflectance spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L1402. [Google Scholar] [CrossRef]
- Wang, F.; Huang, J.; Tang, Y.; Wang, X. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Datt, B. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in eucalyptus leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Le Maire, G.; Francois, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using prospect simulated database and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Ahamed, T.; Tian, L.; Zhang, Y.; Ting, K.C. A review of remote sensing methods for biomass feedstock production. Biomass Bioenerg. 2011, 35, 2455–2469. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Formulation and assessment of narrow-band vegetation indices from EO-1 hyperion imagery for discriminating sugarcane disease. In Proceedings of the Spatial Sciences Institute Conference: Spatial Knowledge without Boundaries, Canberra, Australia, 22–26 September 2003; pp. 1–13. [Google Scholar]
- Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Zur, Y.; Stark, R.; Gritz, U. Non-destructive and remote sensing techniques for estimation of vegetation status. In Proceedings of the Third European Conference on Precision Agriculture, Montipellier, France, 18–20 June 2001; pp. 301–306. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Curran, P.J.; Hay, A.M. The importance of measurement error for certain procedures in remote sensing at optical wavelengths. Photogramm. Eng. Remote Sens. 1986, 52, 229–241. [Google Scholar]
- Liaw, A.; Weiner, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Waske, B.; Benediktsson, J.A.; Ãrnason, K.; Sveinsson, J.R. Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Can. J. Remote Sens. 2009, 35, 106–116. [Google Scholar] [CrossRef]
- Robin, G.; Jean-Michel, P.; Christine, T.M. Variable selection using random forests. Pattern Recogn. Lett. 2010, 31, 2225–2236. [Google Scholar]
- Diaz-Uriarte, R. Package “Varselrf”. Available online: http://ligarto.org/rdiaz/Software/Software.html (accessed on 20 April 2017).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Efron, B.; Tibshirani, R. Improvements on cross-validation: The .632+ bootstrap method. J. Am. Stat. Assoc. 1997, 92, 548–560. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Forkuor, G. Agricultural Land Use Mapping in West Africa Using Multi-Sensor Satellite Imagery. Ph.D. Thesis, University of Würzburg, Würzburg, Germany, 2014. [Google Scholar]
- Zhang, H.; Lan, Y.; Suh, C.P.; Westbrook, J.K.; Lacey, R.; Hoffmann, W.C. Differentiation of cotton from other crops at different growth stages using spectral properties and discriminant analysis. Trans. ASABE 2012, 5, 1–8. [Google Scholar] [CrossRef]
- Kim, H.O.; Yeom, J.M. Sensitivity of vegetation indices to spatial degradation of RapidEye imagery for paddy rice detect: A case study of South Korea. GiSci. Remote Sens. 2015, 52, 1–17. [Google Scholar] [CrossRef]
- Sun, B.; Peng, Y.; Yang, H.; Li, Z.; Gao, Y.; Wang, C.; Yan, Y.; Liu, Y. Alfalfa (Medicago sativa L.)/maize (Zea mays L.) intercropping provides a feasible way to improve yield and economic incomes in farming and pastoral areas of Northeast China. PLoS ONE 2014, 9, e110556. [Google Scholar] [CrossRef] [PubMed]
- Seck, P.A.; Diagne, A.; Mohanty, S.; Wopereis, M.C.S. Crops that feed the world 7: Rice. Food Secur. 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Castellanos, A.; Tittonell, P.; Rufino, M.C.; Giller, K.E. Feeding, crop residue and manure management for integrated soil fertility management—A case study from Kenya. Agric. Syst. 2014, 134, 24–35. [Google Scholar] [CrossRef]
- Bassa, Z. An Assessment of Land Cover Change Patterns Using Remote Sensing: A Case Study of Dube and Esikhawini, KkwaZulu-Natal, South Africa. Master’s Thesis, University of KwaZulu-Natal, Durban, South Africa, 2012. [Google Scholar]
- Arvor, D.; Jonathan, M.; Meirelles, M.S.E.P.; Dubreuil, V.; Durieux, L. Classification of modis evi time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32, 7847–7871. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef]
- Smith, J.H.; Stehman, S.V.; Wickham, J.D.; Yang, L. Effects of landscape characteristics on land-cover class accuracy. Remote Sens. Environ. 2003, 84, 342–349. [Google Scholar] [CrossRef]
- Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J.M.; Guijarro, M.; Ribeiro, A. Crop row detection in maize fields inspired on the human visual perception. Sci. World J. 2012, 2012, 484390. [Google Scholar] [CrossRef] [PubMed]
- Vintrou, E.; Houles, M.; Seen, D.L.; Baron, C.; Feau, C.; Laine, G.; Begue, A. Mapping cultivated area in West Africa using modis imagery and agro-ecological stratification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. 393–396. [Google Scholar]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flett, B.C.; Bensch, M.J.; Smit, E. In Field Guide for Identification of Maize Pests in South Africa; Grain Crops Institute: Potchefsroom, South Africa, 1996. [Google Scholar]
- Gianoli, E.; Ramos, I.; Alfaro-Tapia, A.; Valdéz, Y.; Echegaray, E.R.; Yábar, E. Benefits of a maize-bean-weeds mixed cropping system in Urubamba Valley, Peruvian Andes. Int. J. Pest Manag. 2006, 52, 283–289. [Google Scholar] [CrossRef]
- Seran, T.H.; Brintha, I. Review on Maize Based Intercropping. Agron. J. 2010, 9, 135–145. [Google Scholar] [CrossRef]
- Henrik, S.; Peeter, P. Reduction of stemborer damage by intercropping maize with cowpea. Agric. Ecosyst. Environ. 1997, 62, 13–19. [Google Scholar]
- Nyasani, J.O.; Meyhöfer, R.; Subramanian, S.; Poehling, H.M. Effect of intercrops on thrips species composition and population abundance on French beans in Kenya. Entomolog. Exp. Appl. 2012, 142, 236–246. [Google Scholar] [CrossRef]
- Mahuku, G.; Lockhart, B.E.; Wanjala, B.; Jones, M.W.; Kimunye, J.N.; Stewart, L.R.; Cassone, B.J.; Sevgan, S.; Nyasani, J.O.; Kusia, E.; et al. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in Sub-Saharan Africa. Phytopathology 2015, 105, 956–965. [Google Scholar] [CrossRef] [PubMed]
Name | Index | Formula | Reference |
---|---|---|---|
Canopy Chlorophyll Content Index | CCCI | [28] | |
Normalized Difference Red-Edge | NDRE | ) | [29] |
Transformed Soil Adjusted Vegetation Index | TSAVI | )) | [30] |
Soil Adjusted Vegetation Index Red-Edge | SAVI-edge | ) | |
Leaf Chlorophyll Index | LCI | ) | [31] |
Soil Adjusted Vegetation Index | SAVI | ) | [32] |
Normalized Difference Vegetation Index | NDVI | ) | [33] |
Difference Vegetation Index | DVI | [33] | |
Rationalized Normal Difference Vegetation Red-Edge Index | RNDVI-edge | [32] | |
Simple Ration | SR | [34] | |
Chlorophyll Green | Chlgreen | [35] | |
Chlorophyll Red-Edge | ChlRed-edge | [35] | |
Green Normalized Difference Vegetation | GNDVI | ) | [36] |
Simple Ratio 672/550 Datt5 | SR672/550 | [37] | |
Simple Ratio 695/670 Carter 5 | Ctr5 | [38] | |
Simple Ratio 710/760 Carter 4 | Ctr4 | [38] | |
Wide Dynamic Range Vegetation Index | WDRVI | ) | [39] |
Enhanced Vegetation Index | EVI | +1) | [39] |
Modified Chlorophyll Absorption Ratio Index | MCARI | )( | [40] |
Rationalized Normal Difference Vegetation Index | RNDVI | ||
Disease Water Stress Index | DSWI-4 | [41] | |
Modified Chlorophyll Absorption Ratio Index | MCARI | ||
Structure Intensive Pigment Index 3 | SIPI3 | ) | [42] |
Anthocyanin Reflectance Index | ARI-edge | ) | [43] |
Disease Water Stress Red-edge Index | DSWI-edge | ||
Structure Intensive Pigment Index 2 | SIPI2 | ) | [42] |
Enhanced Vegetation Index Red-Edge 2 | EVI-edge 2 | 1) | |
Transformed Soil Adjusted Vegetation Index Red-Edge | TSAVI-edge | )) | |
Difference Vegetation Index Red-Edge | DVI-edge | ||
Green Leaf Index | GLI | ) | [40] |
Analysis | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|
RE (bands) | 87.46 | 0.86 |
RE (bands) + All RE_veg indices | 86.41 | 0.84 |
RF selected spectral variables | 93.20 | 0.91 |
Class | Artificial Surface | Cropland | Natural Vegetation | Water Bodies | Total | UA (%) | F1 Score |
---|---|---|---|---|---|---|---|
Artificial Surface | 904 | 23 | 0 | 18 | 945 | 96.48 | 0.96 |
Cropland | 11 | 845 | 89 | 0 | 945 | 87.84 | 0.89 |
Natural Vegetation | 0 | 94 | 851 | 0 | 945 | 90.53 | 0.90 |
Water Bodies | 22 | 0 | 0 | 923 | 945 | 98.09 | 0.98 |
Total | 937 | 962 | 940 | 941 | 3780 | ||
PA (%) | 95.66 | 89.42 | 90.05 | 97.67 | |||
OA (%) | 93.20 |
Analysis | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|
RE (bands) | 80.24 | 0.77 |
RE (bands) + All RE_veg indices | 73.38 | 0.70 |
RF selected spectral variables | 85.71 | 0.84 |
Class | Mono Cropping | Mixed Cropping | Total | UA (%) |
---|---|---|---|---|
Mono maize cropping | 486 | 74 | 560 | 84.97 |
Mixed maize cropping | 86 | 474 | 560 | 86.50 |
Total | 572 | 548 | 1120 | |
PA (%) | 86.79 | 84.64 | ||
OA (%) | 85.71 | |||
QD (%) | 1.00 | |||
AD (%) | 13.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richard, K.; Abdel-Rahman, E.M.; Subramanian, S.; Nyasani, J.O.; Thiel, M.; Jozani, H.; Borgemeister, C.; Landmann, T. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya. Sensors 2017, 17, 2537. https://doi.org/10.3390/s17112537
Richard K, Abdel-Rahman EM, Subramanian S, Nyasani JO, Thiel M, Jozani H, Borgemeister C, Landmann T. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya. Sensors. 2017; 17(11):2537. https://doi.org/10.3390/s17112537
Chicago/Turabian StyleRichard, Kyalo, Elfatih M. Abdel-Rahman, Sevgan Subramanian, Johnson O. Nyasani, Michael Thiel, Hosein Jozani, Christian Borgemeister, and Tobias Landmann. 2017. "Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya" Sensors 17, no. 11: 2537. https://doi.org/10.3390/s17112537