POFBG-Embedded Cork Insole for Plantar Pressure Monitoring
Abstract
:1. Introduction
2. POFBG-Embedded Insole Production and Characterization
2.1. POFBGs Production and Sensor Assembly
2.2. Instrumented Cork Insole Characterization
3. Force Platform and In-Shoe Applications of the Insole POFBG Plantar Pressure Sensors Network
3.1. Force Platform Application
3.2. In-Shoe Application
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cusano, A.; Cutolo, A.; Albert, J. Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation; Bentham Science Publishers: Potomac, MD, USA, 2009; Chapter 15. [Google Scholar]
- Webb, D.J. Fibre Bragg grating sensors in polymer optical fibres. Meas. Sci. Technol. 2015, 26, 092004. [Google Scholar] [CrossRef]
- Da Silva Marques, R.; Prado, A.R.; da Costa Antunes, P.F.; de Brito André, P.S.; Ribeiro, M.R.N.; Frizera-Neto, A.; Pontes, M.J. Corrosion resistant FBG-based quasi-distributed sensor for crude oil tank dynamic temperature profile monitoring. Sensors 2015, 15, 30693–30703. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Stefani, A.; Bache, M.; Jacobsen, T.; Rose, B.; Herholdt-Rasmussen, N.; Nielsen, F.K.; Andresen, S.; Sørensen, O.B.; Hansen, K.S.; et al. Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings. Opt. Commun. 2011, 284, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Woyessa, G.; Nielsen, K.; Stefani, A.; Markos, C. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 2016, 24, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.E.S.; Ximenes, H.C.B.; Silva, R.L.; Frizera-neto, A.; Ribeiro, M.R.N.; Pontes, M.J. Multi-Parameter Interferometric Sensor Based on a Reduced Diameter Core Axial Offseted Fiber. IEEE Photonics Technol. Lett. 2017, 29, 239–242. [Google Scholar] [CrossRef]
- Neeharika, V.; Pattnaik, P.K. Optical MEMS Pressure Sensors Incorporating Dual Waveguide Bragg Gratings on Diaphragms. IEEE Sens. J. 2016, 16, 681–687. [Google Scholar] [CrossRef]
- Ishikawa, R.; Lee, H.; Lacraz, A.; Theodosiou, A.; Kalli, K.; Mizuno, Y.; Nakamura, K. Pressure Dependence of Fiber Bragg grating inscribed in perfluorinated polymer fiber. IEEE Photonics Technol. Lett. 2017, 29, 2167–2170. [Google Scholar] [CrossRef]
- Theodosiou, A.; Komodromos, M.; Kalli, K. Carbon cantilever beam health inspection using a polymer fibre Bragg grating array. J. Light. Technol. 2017. [Google Scholar] [CrossRef]
- Theodosiou, A.; Lacraz, A.; Stassis, A.; Komodromos, M.; Kalli, K. Plane-by-Plane femtosecond laser inscription method for single-peak Bragg gratings in multimode CYTOP polymer optical fibre. J. Light. Technol. 2017, 1–7. [Google Scholar] [CrossRef]
- Bischoff, F. Organic polymer biocompatibility and toxicology. Clin. Chem. 1972, 18, 869–894. [Google Scholar] [PubMed]
- Kiesel, S.; van Vickle, P.; Peters, K.; Hassan, T.; Kowalsky, M. Intrinsic polymer optical fiber sensors for high-strain applications. Proc. SPIE 2006, 6167. [Google Scholar] [CrossRef]
- Hu, X.; Sáez-Rodríguez, D.; Marques, C.A.F.; Bang, O.; Webb, D.J.; Mégret, P.; Caucheteur, C. Polarization effects in polymer FBGs: Study and use for transverse force sensing. Opt. Express 2015, 23, 4581–4590. [Google Scholar] [CrossRef] [PubMed]
- Marques, C.A.F.; Pospori, A.; Sáez-Rodríguez, D.; Nielsen, K.; Bang, O.; Webb, D.J. Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings. IEEE Sens. J. 2016, 16, 6122–6129. [Google Scholar] [CrossRef]
- Broadway, C.; Gallego, D.; Pospori, A.; Zubel, M.; Webb, D.J.; Sugden, K.; Carpintero, G.; Lamela, H. Microstructured polymer optical fibre sensors for opto-acoustic endoscopy. In Proceedings of the Micro-Structured and Specialty Optical Fibres IV, Brussels, Belgium, 27 April 2016; Volume 9886. [Google Scholar] [CrossRef]
- Ando, S.; Matsuura, T.; Sasaki, S. Perfluorinated polymers for optical waveguides. Chemtech 1994, 24, 20–27. [Google Scholar]
- Yuan, W.; Stefani, A.; Bang, O. Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors. IEEE Photonics Technol. Lett. 2012, 24, 401–403. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.A.F.; Webb, D.J.; Andre, P. Polymer optical fiber sensors in human life safety. Opt. Fiber Technol. 2017, 36, 144–154. [Google Scholar] [CrossRef]
- Razak, A.; Hadi, A.; Zayegh, A.; Begg, R.; Wahab, Y. Foot plantar pressure measurement system: A review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait analysis using wearable sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef] [PubMed]
- Morag, E.; Cavanagh, P.R. Structural and functional predictors of regional peak pressures under the foot during walking. J. Biomech. 1999, 32, 359–370. [Google Scholar] [CrossRef]
- Kim, C.; Eng, J. Symmetry in vertical ground reaction force is accompanied by symmetry in temporal but not distance variables of gait in persons with stroke. Gait Posture 2003, 18, 23–28. [Google Scholar] [CrossRef]
- Taborri, J.; Palermo, E.; Rossi, S.; Cappa, P. Gait Partitioning Methods: A Systematic Review. Sensors 2016, 16, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postolache, O.; Pereira, J.; Viegas, V.; Pedro, L.; Girão, P.; Oliveira, R.; Postolache, G. Smart walker solutions for physical rehabilitation. IEEE Instrum. Meas. Mag. 2015, 18, 21–30. [Google Scholar] [CrossRef]
- De Vito, L.; Postolache, O.; Rapuano, S. Measurements and sensors for motion tracking in motor rehabilitation. IEEE Instrum. Meas. Mag. 2014, 1, 30–38. [Google Scholar] [CrossRef]
- Roriz, P.; Carvalho, L.; Frazão, O.; Santos, J.; Simões, J. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review. J. Biomech. 2014, 4, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.Z.; Tan, K.M.; Tjin, S.C.; Liaw, C.Y.; Chaudhuri, P.R.; Guo, X.; Lu, C. Design of a foot-pressure monitoring transducer for diabetic patients based on FBG sensors. In Proceedings of the 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, LEOS, Tucson, AZ, USA, 27–28 October 2003. [Google Scholar]
- Liang, T.C.; Lin, J.J.; Guo, L.Y. Plantar pressure detection with fiber Bragg gratings sensing system. Sensors 2016, 16, 1766. [Google Scholar] [CrossRef] [PubMed]
- Suresh, R.; Bhalla, S.; Hao, J.; Singh, C. Development of a high resolution plantar pressure monitoring pad based on fiber Bragg grating (FBG) sensor. Technol. Health Care 2015, 23, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Domingues, M.F.; Tavares, C.; Leitão, C.; Frizera-Neto, A.; Alberto, N.; Marques, C.; Radwan, A.; Rodriguez, J.; Postolache, O.; Rocon, E.; et al. Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring. J. Biomed. Opt. 2017, 22. [Google Scholar] [CrossRef] [PubMed]
- Corning® SMF-28® Ultra Optical Fiber Product Information. Available online: https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (accessed on 15 December 2017).
- Chromis Fiberoptics. Available online: http://chromisfiber.com/product-category/gigapof-fibers/ (accessed on 15 December 2017).
- Large, M.C.J.; Moran, J.; Ye, L. The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF). Meas. Sci. Technol. 2009, 20. [Google Scholar] [CrossRef]
- Peters, K. Polymer optical fiber sensors—A review. Smart Mater. Struct. 2011, 20, 13002. [Google Scholar] [CrossRef]
- Golay, A.; Ybarra, J. Link between obesity and type 2 diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 2005, 19, 649–663. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.; Steinholm, S.; Ferrucci, L. Characteristic Gait Patterns in Older Adults with Obesity—Results from the Baltimore Longitudinal Study of Aging. J. Biomech. 2011, 43, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Cimolin, V.; Vismara, L.; Galli, M.; Zaina, F.; Negrini, S.; Capodaglio, P. Effects of obesity and chronic low back pain on gait. J. Neuroeng. Rehabil. 2011, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- Pospori, A.; Webb, D.J. Stress Sensitivity Analysis of Optical Fiber Bragg Grating Based Fabry-Pérot Interferometric Sensors. J. Light. Technol. 2017, 35, 2654–2659. [Google Scholar] [CrossRef]
- Wearing, S.C.; Urry, S.; Smeathers, J.E.; Battistutta, D. A comparison of gait initiation and termination methods for obtaining plantar foot pressures. Gait Posture 1999, 10, 255–263. [Google Scholar] [CrossRef]
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, capabilities and applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef]
- Thorlabs, “Graded-Index Polymer Optical Fiber (GI-POF).”. Available online: https://www.thorlabs.com/catalogPages/1100.pdf (accessed on 19 June 2017).
- Lacraz, A.; Polis, M.; Theodosiou, A.; Koutsides, C.; Kalli, K. Femtosecond laser inscribed Bragg gratings in low loss CYTOP polymer optical fiber. IEEE Photonics Technol. Lett. 2015, 27, 693–696. [Google Scholar] [CrossRef]
- Theodosiou, A.; Lacraz, A.; Polis, M.; Kalli, K.; Tsangari, M. Modified fs-laser inscribed FBG array for rapid mode shape capture of free-free vibrating beams. IEEE Photonics Technol. Lett. 2016, 28, 1509–1512. [Google Scholar] [CrossRef]
- Theodosiou, A.; Polis, M.; Lacraz, A.; Kalli, K.; Komodromos, M.; Stassis, A. Comparative study of multimode CYTOP graded index and single-mode silica fibre Bragg grating array for the mode shape capturing of a free-free metal beam. Proc. SPIE 2016, 98860. [Google Scholar] [CrossRef]
- Dos Santos, W.M.; Caurin, G.A.P.; Siqueira, A.A.G. Design and control of an active knee orthosis driven by a rotary Series Elastic Actuator. Control Eng. Pract. 2017, 58, 307–318. [Google Scholar] [CrossRef]
- Domingues, M.F.; Alberto, N.; Leitão, C.; Tavares, C.; Rocon de Lima, E.; Radwan, A.; Iglésias, V.; Rodriguez, J.; André, P.S.; Antunes, P. Insole optical fiber sensor architecture for remote gait analysis—An eHealth Solution. IEEE Internet Things J. 2017. [Google Scholar] [CrossRef]
- O’Brien, D.J.; Mather, P.T.; White, S.R. Viscoelastic Properties of an Epoxy Resin during Cure. J. Compos. Mater. 2001, 35, 883–904. [Google Scholar] [CrossRef]
- Ashby, M.F. Materials Selection in Mechanical Design; Design, Butterworth-Heinemann, Elsevier: Cambridge, UK, 2004; pp. 30–40. [Google Scholar]
- Radwan, A.; Domingues, M.F.; Rodriguez, J. Mobile Caching-enabled Small-cells for Delay-tolerant e-Health Apps. In Proceedings of the IEEE Conference on Communications (ICC’17), Paris, France, 21–25 May 2017. [Google Scholar]
- Tiwari, U.; Thyagarajan, K.; Shenoy, M.R.; Jain, S.C. EDF-Based edge-filter interrogation scheme for FBG sensors. IEEE Sens. J. 2013, 13, 1315–1319. [Google Scholar] [CrossRef]
- Díaz, C.A.R.; Leitão, C.; Marques, C.A.F.; Domingues, M.F.; Alberto, N.; Pontes, M.J.; Frizera, A.; Ribeiro, M.R.N.; André, P.S.B.; Antunes, P.F.C. Low-Cost Interrogation Technique for Dynamic Measurements with FBG-Based Devices. Sensors 2017, 17, 2414. [Google Scholar] [CrossRef] [PubMed]
FBG | Pressure Sensitivity (pm/kPa) | Temperature Sensitivity (pm/°C) | RMSE * (kPa) |
---|---|---|---|
1 | 8.31 ± 0.20 | 18.4 ± 0.42 | 36.59 |
2 | 7.99 ± 0.28 | 18.2 ± 0.47 | 54.47 |
3 | 8.51 ± 0.23 | 18.9 ± 0.41 | 42.76 |
4 | 7.71 ± 0.31 | 18.5 ± 0.49 | 62.81 |
5 | 8.20 ± 0.15 | 18.1 ± 0.45 | 29.22 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilarinho, D.; Theodosiou, A.; Leitão, C.; Leal-Junior, A.G.; Domingues, M.D.F.; Kalli, K.; André, P.; Antunes, P.; Marques, C. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring. Sensors 2017, 17, 2924. https://doi.org/10.3390/s17122924
Vilarinho D, Theodosiou A, Leitão C, Leal-Junior AG, Domingues MDF, Kalli K, André P, Antunes P, Marques C. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring. Sensors. 2017; 17(12):2924. https://doi.org/10.3390/s17122924
Chicago/Turabian StyleVilarinho, Débora, Antreas Theodosiou, Cátia Leitão, Arnaldo G. Leal-Junior, Maria De Fátima Domingues, Kyriacos Kalli, Paulo André, Paulo Antunes, and Carlos Marques. 2017. "POFBG-Embedded Cork Insole for Plantar Pressure Monitoring" Sensors 17, no. 12: 2924. https://doi.org/10.3390/s17122924