Dual Sensor Control Scheme for Multi-Target Tracking
Abstract
:1. Introduction
2. The Formulation of Sensor Control
- a portrayal of the multi-target posterior probability density function (pdf);
- the admissible control actions of the sensors;
- a predefined metric works to evaluate various control actions.
2.1. Bayesian Multi-Target Filtering
2.2. Ideal Control Process
2.3. Evaluation Function
2.4. Predicted Ideal Measurement
3. Delta-Generalized Labeled Multi-Bernoulli Filter
3.1. Prediction
3.2. Update
3.3. State Estimation
4. The Proposed Strategies
4.1. A Novel Structure of Dual Sensor Control Scheme
4.2. Minimize the Posterior Distance between Sensor and Targets
4.3. Maximize the Predicted Average Probability of Detection
5. Dual Sensor Control Algorithms
Algorithm 1 Dual sensor control algorithms |
Input: sensor position ,the posterior pdf , and admissible control set |
1. Prediction: compute the predicted pdf by Section 3.1 |
: |
If Metric == PAPD |
2. State estimation: extracted the predicted estimated targets’ state by Section 3.3 |
3. For |
4. Compute the admissible sensor position by Section 2.2 |
5. Evaluation: maximize the PAPD by Equation (32) |
6. Endfor: obtain the optimal control , and drive the sensor to the new position |
Elseif Metric == PDST |
7. For |
8. PIMs: generate the virtual observation by Section 2.4 |
9. Update: compute the virtual updated posterior pdf by Section 3.2 |
10. State estimation: extract the virtual estimated targets’ state by Section 3.3 |
11. Calculate the center of the virtual estimation |
12. Calculate the admissible sensor position by Section 2.2 |
13. Evaluation: minimize the PDST by Equation (34) |
14. Endfor: obtain the optimal control , and drive the sensor to the new position |
End |
Observer: get the real observation |
15. Update: compute the posterior pdf by Section 3.2 |
16. State estimation: extract the estimated targets’ state by Section 3.3 |
: |
17. Calculate the center of the estimation |
18. For |
19. Calculate the admissible sensor position by Section 2.2 |
20. Evaluation: minimize the PDST by Equation (35) |
21. Endfor: obtain the optimal control , and drive sensor to the new position |
Output: control pair , sensor position , the posterior pdf , and the estimation |
5.1. Dual Sensor Control Algorithm with PAPD and PDST
5.2. Dual Sensor Control Algorithm with PDST and PDST
6. Simulations
6.1. Setup of the Simulations
6.2. Results and Analysis
6.3. Further Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
POMDPs | partially observed Markov decision processes |
FISST | Finite Set Statistics |
MTT | Multi-Target Tracking |
ICP | Ideal Control Process |
GLMB | Generalized Labeled Multi-Bernoulli |
RFS | Random Finite Set |
PDST | Posterior Distance between Sensor and Targets |
PAPD | Predicted Average Probability of Detection |
OSPA | Optimal Subpattern Assignment |
References
- Mahler, R.P. Statistical Multisource-Multitarget Information Fusion; Artech House, Inc.: Norwood, MA, USA, 2007. [Google Scholar]
- Castañón, D.; Carin, L. Stochastic control theory for sensor management. In Foundations and Applications of Sensor Management; Springer: New York, NY, USA, 2008; pp. 7–32. [Google Scholar]
- Mahler, R. Objective functions for Bayesian control-theoretic sensor management, I: Multitarget first-moment approximation. In Proceedings of the 2003 IEEE Aerospace Conference Proceedings, Big Sky, MT, USA, 8–15 March 2003; Volume 4, pp. 1905–1923. [Google Scholar]
- Li, J.; Chen, J.; Wang, P.; Li, C. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR. Sensors 2018, 18, 548. [Google Scholar] [CrossRef] [PubMed]
- Hero, A.O.; Cochran, D. Sensor Management: Past, Present, and Future. IEEE Sens. J. 2011, 11, 3064–3075. [Google Scholar] [CrossRef]
- Wang, X.D.; Li, T.C.; Sun, S.D.; Corchado, J.M. A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking. Sensors 2017, 17, 21. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, V. Partially Observed Markov Decision Processes; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Mahler, R.P. Global posterior densities for sensor management. In Proceedings of the Acquisition, Tracking, and Pointing XII, Orlando, FL, USA, 30 July 1998; International Society for Optics and Photonics: Bellingham, WA, USA, 1998; Volume 3365, pp. 252–264. [Google Scholar]
- Mahler, R. Multitarget sensor management of dispersed mobile sensors. In Theory and Algorithms for Cooperative Systems; World Scientific: Singapore, 2004; pp. 239–310. [Google Scholar]
- Ristic, B.; Vo, B.N. Sensor control for multi-object state-space estimation using random finite sets. Automatica 2010, 46, 1812–1818. [Google Scholar] [CrossRef]
- Ristic, B.; Vo, B.N.; Clark, D. A Note on the Reward Function for PHD Filters with Sensor Control. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1521–1529. [Google Scholar] [CrossRef]
- Mahler, R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1152–1178. [Google Scholar] [CrossRef]
- Vo, B.N.; Singh, S.; Doucet, A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1224–1245. [Google Scholar]
- Hoang, H.G.; Vo, B.T. Sensor management for multi-target tracking via multi-Bernoulli filtering. Automatica 2014, 50, 1135–1142. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Trans. Signal Process. 2009, 57, 409–423. [Google Scholar]
- Gostar, A.K.; Hoseinnezhad, R.; Bab-Hadiashar, A. Multi-Bernoulli sensor control using Cauchy-Schwarz divergence. In Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 651–657. [Google Scholar]
- Hero, A.O.; Kreucher, C.M.; Blatt, D. Information theoretic approaches to sensor management. In Foundations and Applications of Sensor Management; Springer: New York, NY, USA, 2008; pp. 33–57. [Google Scholar]
- Beard, M.; Vo, B.T.; Vo, B.N.; Arulampalam, S. Void probabilities and Cauchy-Schwarz divergence for generalized labeled multi-Bernoulli models. IEEE Trans. Signal Process. 2017, 65, 5047–5061. [Google Scholar] [CrossRef]
- Gostar, A.K.; Hoseinnezhad, R.; Bab-Hadiashar, A.; Papi, F. Sensor-Management for Multitarget Filters via Minimization of Posterior Dispersion. IEEE Trans. Aerosp. Electron. Syst. 2018, 53, 2877–2884. [Google Scholar] [CrossRef]
- Vo, B.T.; Vo, B.N. Labeled random finite sets and multi-object conjugate priors. IEEE Trans. Signal Process. 2013, 61, 3460–3475. [Google Scholar] [CrossRef]
- Vo, B.N.; Vo, B.T.; Phung, D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Trans. Signal Process. 2014, 62, 6554–6567. [Google Scholar] [CrossRef]
- Schuhmacher, D.; Vo, B.T.; Vo, B.N. A Consistent Metric for Performance Evaluation of Multi-Object Filters. IEEE Trans. Signal Process. 2008, 56, 3447–3457. [Google Scholar] [CrossRef]
PAPD | PDST | C–S Divergence | |
---|---|---|---|
Double controller | s | s | s |
Single controller | s | s | s |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Han, C. Dual Sensor Control Scheme for Multi-Target Tracking. Sensors 2018, 18, 1653. https://doi.org/10.3390/s18051653
Li W, Han C. Dual Sensor Control Scheme for Multi-Target Tracking. Sensors. 2018; 18(5):1653. https://doi.org/10.3390/s18051653
Chicago/Turabian StyleLi, Wei, and Chongzhao Han. 2018. "Dual Sensor Control Scheme for Multi-Target Tracking" Sensors 18, no. 5: 1653. https://doi.org/10.3390/s18051653
APA StyleLi, W., & Han, C. (2018). Dual Sensor Control Scheme for Multi-Target Tracking. Sensors, 18(5), 1653. https://doi.org/10.3390/s18051653