Distributed Compressed Sensing Based Ground Moving Target Indication for Dual-Channel SAR System
Abstract
:1. Introduction
2. Brief Introduction to Distributed Compressed Sensing
2.1. Joint Sparsity Model-1
2.2. The Joint Recovery Strategy for the JSM-1 Model
3. Signal Model of the Dual-Channel SAR System
4. Distributed Compressed Sensing Based Dual-Channel SAR-GMTI System
4.1. Sparse Representation for Individual Channel
4.2. JSM-1 Model
5. The Hierarchical Variational Bayesian Based DCS Algorithm
5.1. Proposed Algorithm
Algorithm 1: HVB-DCS Algorithm |
Input: A set of measurement vectors and corresponding measurement matrices |
. |
Output: The reconstructed signal , . |
Initialize the hyperparameters. Set the initial values of the variables (a, b, , |
, e, f) as . |
Compute the variational distribution for the common component. |
Compute , and |
Compute the variational distribution for the prior of the common component. |
Update , compute |
Compute the variational distributions for the innovation components. |
Compute , and . |
Compute the variational distributions for the prior of the innovation components. |
Update , compute |
Compute the variational distribution for the prior of noise vector. |
Update , compute |
Iterate steps 2 , 3 , 4 , 5 and 6 until convergence occurs to hyperparameters. |
Output for . |
5.2. Complexity Analysis
6. Simulations and Experiments
6.1. The Effects of Along-Track and Cross-Track Velocities on SAR Imaging
6.1.1. The Effect of Cross-Track Velocity
6.1.2. The Effect of Along-Track Velocity
6.2. The Simulation on Point Targets
6.3. Effects of Problem Size and Data Rate on Complexity of HVB-DCS
6.4. Experiment on Real SAR Data
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, S.; Liao, G.; Qu, Y.; Zhou, Z.; Liu, X. Ground Moving Targets Imaging Algorithm for Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2011, 1, 462–477. [Google Scholar] [CrossRef]
- Wang, W.; Liao, G.; Zhu, S.; Zhang, J. Compressive sensing-based ground moving target indication for dual-channel synthetic aperture radar. IET Radar Sonar Navig. 2013, 8, 858–866. [Google Scholar] [CrossRef]
- Zheng, M.; Yang, R. SAR moving targets detection based on dpca and interferometric processing. J. Electron. Inf. Technol. 2003, 11, 1525–1530. [Google Scholar]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 4, 1289–1306. [Google Scholar] [CrossRef]
- Babacan, S.D.; Molina, R.; Katsaggelos, A.K. Bayesian Compressive Sensing Using Laplace Priors. IEEE Trans. Image Process. 2010, 1, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 6, 2346–2356. [Google Scholar] [CrossRef]
- Figueiredo, M.A.T. Adaptive sparseness for supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 9, 1150–1159. [Google Scholar] [CrossRef]
- Candes, E.J. The restricted isometry property and its implications for compressed sensing. C. R. Math. 2008, 9, 589–592. [Google Scholar] [CrossRef]
- Baraniuk, R.; Steeghs, P. Compressive Radar Imaging. In Proceedings of the 2007 IEEE Radar Conference, Boston, MA, USA, 17–20 April 2007; pp. 128–133. [Google Scholar] [CrossRef]
- Alonso, M.T.; Lopez-Dekker, P.; Mallorqui, J.J. A Novel Strategy for Radar Imaging Based on Compressive Sensing. IEEE Trans. Geosci. Remote Sens. 2010, 12, 4285–4295. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Wang, B.; Fang, Y.; Song, Z.; Wang, S. Multichannel and Wide-Angle SAR Imaging Based on Compressed Sensing. Sensors 2017, 2, 295. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Xu, Z.; Zhang, B.; Hong, W.; Wu, Y. Fast Compressed Sensing SAR Imaging Based on Approximated Observation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 1, 352–363. [Google Scholar] [CrossRef]
- Li, B.; Liu, F.; Zhou, C.; Lv, Y.; Hu, J. Phase Error Correction for Approximated Observation-Based Compressed Sensing Radar Imaging. Sensors 2017, 3, 613. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.X.; Bamler, R. Tomographic SAR Inversion by L1-Norm Regularization—The Compressive Sensing Approach. IEEE Trans. Geosci. Remote Sens. 2010, 10, 3839–3846. [Google Scholar] [CrossRef]
- Stojanovic, I.; Karl, W.C. Imaging of Moving Targets with Multi-Static SAR Using an Overcomplete Dictionary. IEEE J. Sel. Top. Signal Process. 2010, 1, 164–176. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, H.; Li, G.; Meng, H.; Wang, X. A novel STAP algorithm using sparse recovery technique. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. 336–339. [Google Scholar] [CrossRef]
- Parker, J.T.; Potter, L.C. A Bayesian perspective on sparse regularization for STAP post-processing. In Proceedings of the 2010 IEEE Radar Conference, Washington, DC, USA, 10–14 May 2010; pp. 1471–1475. [Google Scholar] [CrossRef]
- Baron, D.; Wakin, M.B.; Duarte, M.F.; Sarvotham, S.; Baraniuk, R.G. Distributed Compressed Sensing; Technical Report ECE-0612; Electrical and Computer Engineering Department, Rice University: Houston, TX, USA, 2006. [Google Scholar]
- Baron, D.; Duarte, M.F.; Sarvotham, S.; Wakin, M.B.; Baraniuk, R.G. An Information-Theoretic Approach to Distributed Compressed Sensing. In Proceedings of the Allerton Conference on Communication Control & Computing, Monticello, IL, USA, 26–28 September 2005. [Google Scholar]
- Schnelle, S.R.; Laska, J.N.; Hegde, C.; Duarte, M.F.; Davenport, M.A.; Baraniuk, R.G. Texas hold ’Em algorithms for distributed compressive sensing. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dallas, TX, USA, 14–19 March 2010; pp. 2886–2889. [Google Scholar] [CrossRef]
- Valsesia, D.; Coluccia, G.; Magli, E. Joint recovery algorithms using difference of innovations for distributed compressed sensing. In Proceedings of the Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2013; pp. 414–417. [Google Scholar]
- Sundman, D.; Chatterjee, S.; Skoglund, M. Parallel pursuit for distributed compressed sensing. In Proceedings of the IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 2–5 December 2013; pp. 783–786. [Google Scholar]
- Matamoros, J.; Fosson, S.M.; Magli, E.; Anton-Haro, C. Distributed ADMM for in-network reconstruction of sparse signals with innovations. IEEE Trans. Signal Inf. Process. Netw. 2015, 4, 225–234. [Google Scholar] [CrossRef]
- Tzikas, D.G.; Likas, A.C.; Galatsanos, N.P. The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 2008, 6, 131–146. [Google Scholar] [CrossRef]
- Chen, W.; Wassell, I.J. Variational Bayesian Algorithm for Distributed Compressive Sensing. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015; pp. 4889–4894. [Google Scholar] [CrossRef]
- Chen, W.; Wassell, I.J. A Decentralized Bayesian Algorithm for Distributed Compressive Sensing in Networked Sensing Systems. IEEE Trans. Wirel. Commun. 2016, 2, 1282–1292. [Google Scholar] [CrossRef]
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007, 6, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Herman, M.A.; Strohmer, T. High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 2009, 6, 2275–2284. [Google Scholar] [CrossRef]
- Mamaghanian, H.; Khaled, N.; Atienza, D.; Vandergheynst, P. Compressed sensing for real-time energy-efficient ecg compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 2011, 9, 2456–2466. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, G.; Zhao, K.; Jiang, X. Compressive holography algorithm for the objects composed of point sources. Appl. Opt. 2017, 1, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Candes, E.J.; Plan, Y. Matrix completion with noise. Proc. IEEE 2010, 6, 925–936. [Google Scholar] [CrossRef]
- Karakus, C.; Gurbuz, A.C.; Tavli, B. Analysis of energy efficiency of compressive sensing in wireless sensor networks. IEEE Sens. J. 2013, 5, 1999–2008. [Google Scholar] [CrossRef]
- Li, S.; Qi, H. A douglas rachford splitting approach to compressed sensing image recovery using low-rank regularization. IEEE Trans. Image Process. 2015, 11, 4240–4249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Liao, G.; Wang, W.; Zeng, C.; Yang, D. Wideswath synthetic aperture radar ground moving targets indication with low data rate based on compressed sensing. IET Radar Sonar Navig. 2013, 9, 1027–1034. [Google Scholar] [CrossRef]
- Yang, J.; Liu, C.; Wang, Y. Imaging and parameter estimation of fast-moving targets with single-antenna SAR. IEEE Geosci. Remote Sens. Lett. 2014, 2, 529–533. [Google Scholar] [CrossRef]
- Wang, Z.R.; Xu, J.; Huang, Z.Z.; Zhang, X.D.; Xia, X.G.; Long, T. Road-Aided Doppler Ambiguity Resolver for SAR Ground Moving Target in the Image Domain. IEEE Geosci. Remote Sens. Lett. 2016, 10, 1552–1556. [Google Scholar] [CrossRef]
- Dong, Q.; Xing, M.D.; Xia, X.G.; Zhang, S.; Sun, G.C. Moving Target Refocusing Algorithm in 2-D Wavenumber Domain after BP Integral. IEEE Geosci. Remote Sens. Lett. 2018, 1, 127–131. [Google Scholar] [CrossRef]
- Parisi, G.L. Statistical Field Theory; Addison-Wesley: Reading, MA, USA, 1988. [Google Scholar]
- Tylavsky, D.J.; Sohie, G.R.L. Generalization of the matrix inversion lemma. Proc. IEEE 1986, 7, 1050–1052. [Google Scholar] [CrossRef]
- Al-Shoukairi, M.; Schniter, P.; Rao, B.D. A GAMP-Based Low Complexity Sparse Bayesian Learning Algorithm. IEEE Trans. Signal Process. 2018, 2, 294–308. [Google Scholar] [CrossRef]
- Yang, L.; Fang, J.; Duan, H.; Li, H.; Zeng, B. Fast Low-Rank Bayesian Matrix Completion with Hierarchical Gaussian Prior Models. IEEE Trans. Signal Process. 2018, 11, 2804–2817. [Google Scholar] [CrossRef]
- Cumming, I.G.; Bennett, J.R. Digital Processing of SEASAT SAR Data. In Proceedings of the IEEE 1979 International Conference on Acoustics, Speech and Signal Processing, Washington, DC, USA, 2–4 April 1979; Volume 4, pp. 2–4. [Google Scholar]
- Wang, W.; Zhu, Y.; Zhao, H.; Wu, S. Clutter Suppression and GMTI with Sparse Sampled Data for Dual-channel SAR. In Proceedings of the 2014 IEEE Radar Conference, Cincinnati, OH, USA, 19–23 May 2014; pp. 0280–0284. [Google Scholar]
- Chi, Y.; Scharf, L.L.; Pezeshki, A.; Calderbank, A.R. Sensitivity to Basis Mismatch in Compressed Sensing. IEEE Trans. Signal Process. 2011, 5, 2182–2195. [Google Scholar] [CrossRef]
- Khwaja, A.; Zhang, X.P. Compressed sensing based image formation of SAR/ISAR data in presence of basis mismatch. In Proceedings of the 2012 19th IEEE International Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012; pp. 901–904. [Google Scholar]
- Bernhardt, S.; Boyer, R.; Marcos, S.; Larzabal, P. Compressed Sensing with Basis Mismatch: Performance Bounds and Sparse-Based Estimator. IEEE Trans. Signal Process. 2016, 13, 3483–3494. [Google Scholar] [CrossRef]
- Wang, H.S.C. Mainlobe clutter cancellation by DPCA for space-based radars. In Proceedings of the IEEE Aerospace Applications Conference Digest, Crested Butte, CO, USA, 3–8 February 1991; p. 1. [Google Scholar]
Parameter | Value |
---|---|
Wavelength (m) | 0.03 |
Range bandwidth (MHz) | 150 |
Platform height (m) | 5000 |
Platform velocity (m/s) | 150 |
Incidence angle () | 45 |
PRF (Hz) | 300 |
Aperture size (m) | 2 |
Channel distance (m) | 1 |
Parameter | Value |
---|---|
Slant range of scene center (km) | |
Beam squint angle (rad) | |
Effective radar velocity (m/s) | 7062 |
PRF (Hz) | |
Sampling rate (MHz) | |
Range FM rate (MHz/s) | |
Pulse duration (s) | |
Radar center frequency (MHz) | 5300 |
No. | Azimuth Coordinate (m) | Nearest Slant Range (km) | Along-Track Velocity (m/s) | Across-Track Velocity (m/s) |
---|---|---|---|---|
1 | 5 | 5 | ||
2 | 0 | 0 | ||
3 | 0 | 0 | ||
4 | 0 | 0 | ||
5 | 5 | 5 | ||
6 | 5 | 5 | ||
7 | 5 | 5 | ||
8 | 0 | 0 | ||
9 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Tian, X.; Jiang, J.; Huang, K. Distributed Compressed Sensing Based Ground Moving Target Indication for Dual-Channel SAR System. Sensors 2018, 18, 2377. https://doi.org/10.3390/s18072377
Liu J, Tian X, Jiang J, Huang K. Distributed Compressed Sensing Based Ground Moving Target Indication for Dual-Channel SAR System. Sensors. 2018; 18(7):2377. https://doi.org/10.3390/s18072377
Chicago/Turabian StyleLiu, Jing, Xiaoqing Tian, Jiayuan Jiang, and Kaiyu Huang. 2018. "Distributed Compressed Sensing Based Ground Moving Target Indication for Dual-Channel SAR System" Sensors 18, no. 7: 2377. https://doi.org/10.3390/s18072377