CMTN-SP: A Novel Coverage-Control Algorithm for Moving-Target Nodes Based on Sensing Probability Model in Sensor Networks
Abstract
:1. Introduction
2. Materials and Methods
3. Problem Description and Analysis
3.1. Assumption and Definition
- (1)
- Then sensor nodes are randomly deployed in the area which is being monitored. The initial energy of all nodes is the same. The sensing area is in the shape of a circle [27].
- (2)
- The monitoring area, which is in the shape of a square, is large enough and the edge length is far larger than the sensing radius.
- (3)
- An arbitrary node could acquire its location information via the positioning algorithms, e.g., RSSI and DTOA [28].
- (4)
3.2. Coverage Quality
3.3. Redundant Coverage
3.4. Expectation of First Covarage
4. Realization of CMTN-SP Algorithm
4.1. Algorithm Ideas
4.2. Realization of Algorithm
4.3. Algorithm Complexity
5. System Evaluation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.M.; Zhu, J.Q.; Liu, M.; Gong, H.G. An agenda-based routing protocol in delay tolerant mobile sensor networks. Sensors 2010, 10, 9564–9580. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, Y.; Chen, Y.H.; Tian, H.; Cai, Y.Q.; Jia, W.J.; Wang, B.W. Fog-based evaluation approach for trustworthy communication in sensor-cloud system. IEEE Commun. Lett. 2017, 21, 2532–2535. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Li, E.; Chi, K.K.; Tian, X.Z. Designing prefix code to save energy for wireless powered wireless sensor networks. IET Commun. 2018, 12, 2137–2144. [Google Scholar] [CrossRef]
- Cao, C.L.; Li, Z.; Sun, Z.Y.; Xing, X.F. Multi-target k-coverage preservation algorithm in wireless sensor networks. Comput. Eng. 2016, 42, 59–64. [Google Scholar]
- Jiang, W.J.; Miao, C.L.; Su, L.; Li, Q.; Hu, S.H.; Wang, S.G.; Gao, J.; Liu, H.C.; Abdelzaher, T.F.; Han, J.W.; et al. Towards quality aware information integration in distributed sensing systems. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 198–211. [Google Scholar] [CrossRef]
- Karray, F.; Jmal, M.W.; Garcia-Ortiz, A.; Abid, M.; Obeid, A.M. A comprehensive survey on wireless sensor node hardware platforms. Comput. Netw. 2018, 144, 89–110. [Google Scholar] [CrossRef]
- Liu, M.; Cao, J.N.; Lou, W.; Chen, L.J.; Li, X. Coverage analysis for wireless sensor networks. In Proceedings of the 1st International Conference on Mobile Ad-hoc and Sensor Networks, MSN 2005, Wuhan, China, 13–15 December 2005; pp. 711–720. [Google Scholar]
- Mostafa, B.; Benslimance, A.; Saleh, M.; Kassem, S.; Molnar, M. An energy-efficient multiobjective scheduling model for monitoring in internet of things. IEEE Internet Things J. 2018, 5, 1727–2738. [Google Scholar] [CrossRef]
- Wang, T.; Peng, Z.; Liang, J.B.; Wen, S.; Zakirul, M.Z.; Bhulyan, A.; Cai, Y.Q.; Cao, J.N. Following Targets for Mobile Tracking in wireless sensor networks. ACM Trans. Sens. Netw. 2016, 12. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, Y.Z.; Zhang, D.; Zhao, S.Y.; Fu, W.Y. Moving target tracking in three dimensional space with wireless sensor networks. Wirel. Pers. Commun. 2017, 94, 3403–3413. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W. Coverage analysis and active scheme of wireless sensor networks. IET Wirel. Sens. Syst. 2012, 2, 86–91. [Google Scholar] [CrossRef]
- Xiao, K.J.; Li, J.; Yang, C.H. Exploiting correlation for confident sensing in fusion-based wireless sensor networks. IEEE Trans. Ind. Electron. 2018, 65, 4962–4972. [Google Scholar] [CrossRef]
- Yu, X.F.; Liang, J. Genetic fuzzy tree based node moving strategy of target tracking in multimodal wireless sensor networks. IEEE Access. 2018, 6, 25764–25772. [Google Scholar] [CrossRef]
- Cheng, C.F.; Wang, C.W. The target-barrier coverage problem in wireless sensor networks. IEEE Trans. Mob. Comput. 2018, 17, 1216–1232. [Google Scholar] [CrossRef]
- Fang, W.; Song, X.H.; Wu, X.J.; Sun, J.; Hu, M. Novel efficient deployment schemes for sensor coverage in mobile wireless sensor networks. Inf. Fusion 2018, 41, 25–36. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, G.X.; Liu, A.F.; Bhuiyan, M.A.A.; Jin, Q. A Secure IoT Service Architecture with an Efficient Balance Dynamics Based on Cloud and Edge Computing. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Niyato, D.; Kim, D.I.; Maso, M.; Han, Z. Wireless powered communication networks: Research directions and technological approaches. IEEE Wirel. Commun. 2017, 24, 88–97. [Google Scholar] [CrossRef]
- Song, D.; Qu, J.H. A fast efficient particle swarm optimization algorithm for coverage of wireless sensor networks. In Proceedings of the International Conference on Computer System, Electronics and Control, ICCSEC 2017, Dalian, China, 25–27 December 2017; pp. 514–517. [Google Scholar]
- Idrees, A.K.; Deschinkel, K.; Salomon, M.; Couturier, R. Multiround distributed lifetime coverage optimization protocol in wireless sensor networks. J. Supercomput. 2018, 74, 1949–1972. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Sun, X.M.; Yu, Z.K. K-barrier coverage in wireless sensor networks based on immune particle swarm optimization. Int. J. Sens. Netw. 2018, 27, 250–258. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Zhang, Y.S.; Nie, Y.L.; Wei, W.; Lloret, J.; Song, H.B. CASMOC: A novel complex alliance strategy with multi-objective optimization of coverage in wireless sensor networks. Wirel. Netw. 2017, 23, 1201–1222. [Google Scholar] [CrossRef]
- Wang, T.; Peng, Z.; Wang, C.; Cai, Y.Q.; Chen, Y.H.; Tian, H.; Liang, J.B.; Zhong, B.E. Extracting target detection knowledge based on spatiotemporal information in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2016, 12. [Google Scholar] [CrossRef]
- Bhowmik, S.; Giri, C. Convoy tree based fuzzy target tracking in wireless sensor networks. Int. J. Wirel. Inf. Netw. 2017, 24, 476–484. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Cai, S.B.; Xiong, N.X. The application of social characteristic and L1 optimization in the error correction for networks coding in wireless sensor networks. Sensors 2018, 18, 450. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.M.; Su, B.Y.; Jiang, R. Indoor robot localization combining feature clustering with wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2018, 175. [Google Scholar] [CrossRef]
- Pudasainiy, S.; Mohx, S.; Shinz, S. Stochastic coverage analysis of wireless sensor networks with hybrid sensing model. In Proceedings of the 11th International Conference on Advanced Communication Technology, ICACT 2009, Phoenix Park, Korea, 15–18 February 2009; pp. 549–553. [Google Scholar]
- Zhou, B.; Ahn, D.; Lee, J.; Sun, C.; Ahmed, S.; Kim, Y. A passive tracking system based on geometric constraints in adaptive wireless sensor networks. Sensors 2018, 18, 3276. [Google Scholar] [CrossRef] [PubMed]
- Ubaid, S.; Shafeeq, M.F.; Hussain, M.; Akbar, A.H.; Abuarqoub, A.; Zia, M.S.; Abbas, B. SCOUT: A sink camouflage and concealed data delivery paradigm for circumvention of sink-targeted cyber threats in wireless sensor networks. J. Supercomput. 2018, 74, 5022–5040. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A. Fuzzy logic based 3D localization in wireless sensor networks using invasive weed and bacterial foraging optimization. Telecommun. Syst. 2018, 67, 149–162. [Google Scholar] [CrossRef]
- Liao, C.C.; Ting, C.K. A novel integer-coded memetic algorithm for the set k-cover problem in wireless sensor networks. IEEE Trans. Cybern. 2018, 48, 2245–2258. [Google Scholar] [CrossRef]
- Wang, L.; Wu, W.H.; Qi, J.Y.; Jia, Z.P. Wireless sensor networks coverage optimization based on whale group algorithm. Comput. Sci. Inf. Syst. 2018, 15, 569–583. [Google Scholar] [CrossRef]
- Arivudainambi, D.; Balaji, S. Optimal placement of wireless chargers in rechargeable sensor networks. IEEE Sens. J. 2018, 18, 4212–4222. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Q.; Wen, S.; Cai, Y.Q.; Tian, H.; Chen, Y.H.; Wang, B.W. Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks. Sensors 2017, 17, 139. [Google Scholar] [CrossRef]
- Nie, Y.L.; Wang, H.J.; Qin, Y.J.; Sun, Z.Y. Distributed and morphological operation-based data collection algorithm. Int. J. Distrib. Sens. Netw. 2017, 13. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Lu, Y.Z.; Zhong, Y.C.; Yang, S.X. An unequal cluster-based routing scheme for multi-level heterogeneous wireless sensor networks. Telecommun. Syst. 2018, 68, 11–26. [Google Scholar] [CrossRef]
- Soeanu, A.; Ray, S.; Berger, J.; Debbabi, M. Efficient sensor network management for asset location. Comput. Oper. Res. 2018, 99, 148–165. [Google Scholar] [CrossRef]
- Liu, R.; Debicki, R.D. Fuzzy weighted location algorithm for abnormal target in wireless sensor networks. J. Intell. Fuzzy Syst. 2018, 35, 4299–4307. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, J.Y.; Liu, A.F.; Bhuiyan, M.A.A.; Wang, G.J.; Jia, W.J. Fog-based computing and storage offloading for data synchronization in IoT. IEEE Internet Things J. 2018. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Zhao, Z.M.; He, Z.X.; Xia, T.S. Measurement data classification optimization based on a novel evolutionary kernel clustering algorithm for multi-target tracking. IEEE Sens. J. 2018, 18, 3722–3733. [Google Scholar] [CrossRef]
- Fang, X.M.; Nan, L.; Jiang, Z.H.; Chen, L.J. Fingerprint localisation algorithm for noisy wireless sensor network based on multi-objective evolutionary model. IET Commun. 2017, 11, 1297–1304. [Google Scholar] [CrossRef]
- Wang, T.; Bhuiyan, M.Z.A.; Wang, G.J.; Rahman, M.A.; Wu, J.; Cao, J.N. Big data reduction for smart city’s critical infrastructural health monitoring. IEEE Commun. Mag. 2018, 56, 128–133. [Google Scholar] [CrossRef]
- Luo, W.Z.; Wang, J.X.; Cai, Z.Q.; Peng, G.; Guo, J.; Zhang, S.G. An optimal algorithm for small group multicast in wireless sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 2018, 28, 168–179. [Google Scholar] [CrossRef]
- Gao, X.F.; Chen, Z.Y.; Wu, F.; Chen, G.H. Energy efficient algorithm for k-sink minimum movement target coverage problem in mobile sensor network. IEEE/ACM Trans. Netw. 2017, 25, 3616–3627. [Google Scholar] [CrossRef]
Simulation Parameter | Value | Simulation Parameter | Value |
---|---|---|---|
Monitoring area | 300 × 300 m2 | time | 200 s |
Monitoring area | 400 × 400 m2 | Rc | 20 m |
Rs | 10 m | ER-elec | 50 J/b |
Initial energy | 10 J | ET-elec | 50 J/b |
Number of sensors | 800 | εfs | 10 (J/b)/m2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Xing, X.; Yan, B.; Lv, Z. CMTN-SP: A Novel Coverage-Control Algorithm for Moving-Target Nodes Based on Sensing Probability Model in Sensor Networks. Sensors 2019, 19, 257. https://doi.org/10.3390/s19020257
Sun Z, Xing X, Yan B, Lv Z. CMTN-SP: A Novel Coverage-Control Algorithm for Moving-Target Nodes Based on Sensing Probability Model in Sensor Networks. Sensors. 2019; 19(2):257. https://doi.org/10.3390/s19020257
Chicago/Turabian StyleSun, Zeyu, Xiaofei Xing, Ben Yan, and Zhiguo Lv. 2019. "CMTN-SP: A Novel Coverage-Control Algorithm for Moving-Target Nodes Based on Sensing Probability Model in Sensor Networks" Sensors 19, no. 2: 257. https://doi.org/10.3390/s19020257
APA StyleSun, Z., Xing, X., Yan, B., & Lv, Z. (2019). CMTN-SP: A Novel Coverage-Control Algorithm for Moving-Target Nodes Based on Sensing Probability Model in Sensor Networks. Sensors, 19(2), 257. https://doi.org/10.3390/s19020257