Acoustic Field of a Linear Phased Array: A Simulation Study of Ultrasonic Circular Tube Material
Abstract
:1. Introduction
2. Acoustic Field Production by a Single Element of the Phased Array
2.1. Multi-Gaussian Beam Overlay Model in Liquid Medium
2.2. Acoustic Field in Solid Medium in the Condition of a Convex Cylindrical Interface
3. Acoustic Field from a Linear Phased-Array Transducer
3.1. Time Delays of Individual Elements
3.1.1. Time Delay in Wedge
3.1.2. Time Delays for the Focusing Beam
4. Paring the Angle Probe Wedge for Ultrasonic Inspection of a Curved Surface
5. Simulation Results and Discussion
6. Experimental Verification
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kanaikin, V.A.; Loskutov, V.E.; Matvienko, A.F.; Patramanskii, B.V. In-tube nondestructive testing of main gas pipelines. Russ. J. Nondestruct. Test. 2007, 43, 302–309. [Google Scholar] [CrossRef]
- Mauch, J.W. Probability of detecting a critical crack during automated ultrasonic testing of parts. Mater. Eval. 2008, 66, 825–827. [Google Scholar]
- Karpelson, A. Ultrasonic inspection of tubes without rotation. J. Med. Ultrason. 1975, 24, 53–55. [Google Scholar]
- McNab, A. A review of eddy current system technology. Br. J. Nondestruct. Test. 1989, 30, 179. [Google Scholar]
- Kashif, U.R.; Ibrahim, Z.; Memon, S.; Jameel, M. Nondestructive test methods for concrete bridges: A review. Constr. Build. Mater. 2016, 107, 58–86. [Google Scholar] [CrossRef] [Green Version]
- Song, W.T.; Pan, Q.X.; Xu, C.G.; Li, X.; Jin, X.; Li, H.X.; Liu, S. Residual stress nondestructive testing for pipe component based on ultrasonic method. In Proceedings of the 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing, Chengdu, China, 20–23 June 2014; pp. 163–167. [Google Scholar]
- Pashagin, A.I.V.; Shcherbinin, E. Indication of magnetic fields with the use of galvanic currents in magnetic-powder nondestructive testing. Russ. J. Nondestruct. Test. 2012, 48, 528–531. [Google Scholar] [CrossRef]
- Freemantle, R.J.; Hankinson, N.C.; Brotherhood, J. Rapid phased array ultrasonic imaging of large area composite aerospace structures. Insight 2005, 47, 129–132. [Google Scholar] [CrossRef]
- Kramb, V.A. Use of phased array ultrasonic for automated aerospace testing Applications. Mater. Eval. 2007, 65, 67–73. [Google Scholar]
- Yang, S.; Yoon, B.; Kim, Y. Using phased array ultrasonic technique for the inspection of straddle. mount-type low-pressure turbine disc. NDT E Int. 2009, 42, 128–132. [Google Scholar] [CrossRef]
- Lu, C.; Deng, D.; Li, L.; Li, L.X. Ultrasonic phased array inspection for gas pressure welds joint of high speed railway. Prz. Elektrotechniczn. 2012, 88, 173–176. [Google Scholar]
- Moallemi, N.; Shahbazpanashi, S.A. Distributed reflector localization approach to ultrasonic array imaging in non-destructive testing applications. IEEE Trans. 2014, 62, 3863–3873. [Google Scholar] [CrossRef]
- Ramm, O.T.; Smith, S.W. Beam steering with linear arrays. IEEE Trans. 1983, 30, 438–452. [Google Scholar]
- Chen, X. Simulation of acoustical field for linear phased array transducer. In Proceedings of the International Conference on Advanced Computer Theory and Engineering, Phuket, Thailand, 20–22 December 2008. [Google Scholar]
- Luo, Y.; Wang, Z.P. The focus acoustic field simulation based on parameter optimization of OPCM ultrasonic phased array elements. In Proceedings of the 2009 Symposium on Piezelectricity, Acoustic Waves, and Device Applications (SPAEDA 2009), Wuhan, China, 17–20 December 2009. [Google Scholar]
- Guz, A.N. On foundations of the ultrasonic non-destructive method of determination of stresses in near-the-surface layers of solid bodies. CMES 2005, 8, 217–229. [Google Scholar]
- Song, S.J.; Kim, C.H. Simulation of 3-D radiation beam patterns propagated through a planar interface from ultrasonic phased array transducers. Ultrasonic 2002, 40, 519–524. [Google Scholar] [CrossRef]
- Park, J.S.; Song, S.J.; Kim, H.J. Calculation of Radiation Beam Field from Phased Array Ultrasonic Transducers Using Expanded Multi-Gaussian Beam Model. Solid State Phenom. 2006, 110, 163–168. [Google Scholar] [CrossRef]
- Park, J.S.; Song, S.J. Use of expanded multi-Gaussian beam model to predict radiation beam fields from array ultrasonic transducer. In Proceedings of the 32nd Annual Review of Process in Quantitative Nondestructive Evaluation, Brunswick, Australia, 31 July–5 August 2005. [Google Scholar]
- Zhao, X.Y.; Gang, T. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers. Ultrasonic 2009, 49, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.X.; Xu, C.G.; Xiao, D.G.; Meng, F. Nondestructive Testing method for curved surfaces based on the multi-Gaussian beam model. J. Nondestruct. Eval. 2015, 34, 34–39. [Google Scholar] [CrossRef]
- Yang, X.X.; Chen, S.L.; Sun, F.; Jin, S. Simulation study on the acoustic field from linear Phased array ultrasonic transducer for engine cylinder testing. Comput. Model. Eng. Sci. 2013, 90, 487–500. [Google Scholar]
- Wen, J.M.; Breazeale, M.A. A diffraction beam field expressed as the superposition of Gaussian beams. J. Acoust. Soc. Am. 1988, 83, 1752–1756. [Google Scholar] [CrossRef]
- Kim, H.J. A Study on Model Based Intelligent Ultrasonic Nondestructive Evaluation. Ph.D. Thesis, SungKyunKwan University, Seoul, Korea, 2001. [Google Scholar]
- Ding, D.; Zhang, Y.; Liu, J. Some extensions of the Gaussian beam expansion: Radiation fields of the rectangular and the Elliptical transducer. J. Acoust. Soc. Am. 2003, 113, 3043–3048. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, J.S.; Song, S.J.; Schmerr, L.W. Modeling angle beam ultrasonic testing using Multi-Gaussian beams. J. Nondestruct. Eval. 2004, 23, 81–93. [Google Scholar] [CrossRef]
- Wang, Y.M.; Li, Y.; Chen, H.K. Ultrasonic Phased Array Detection Technology and Application; National Defense Industry Press: Beijing, China, 2014; pp. 107–108. [Google Scholar]
- Zhu, Y.B. A discussion on paring the angle probe wedge for ultrasonic inspection of curved surface. NDT 1993, 12, 341–349. [Google Scholar]
n | ||
---|---|---|
1 | −2.9716 + 8.6187i | 4.1869 − 5.1560i |
2 | −3.4811 + 0.9687i | 3.8398 − 10.8004i |
3 | −1.3982 − 0.8128i | 3.4355 − 16.3582i |
4 | 0.0773 − 0.3303i | 2.4618 − 27.7134i |
5 | 2.8798 + 1.6109i | 5.4699 + 28.6319i |
6 | 0.1259 − 0.0937i | 1.9833 − 33.2885i |
7 | −0.2641 − 0.6723i | 2.9335 − 22.0151i |
8 | 18.019 + 7.8291i | 6.3036 + 36.7772i |
9 | 0.0518 + 0.0182i | 1.3046 − 38.4650i |
10 | −16.9438 −9.9384i | 6.5889 + 37.0680i |
11 | 0.3708 + 5.4522i | 5.5518 + 22.4255i |
12 | −6.6929 + 4.0722i | 5.4013 + 16.7326i |
13 | −9.3638 − 4.9998i | 5.1498 + 11.1249i |
14 | 1.5872 − 15.4212i | 4.9665 +5.6855i |
15 | 19.0024 + 3.6850i | 4.6296 + 0.3055i |
Parameters | Concrete Setting |
---|---|
Sound Velocity of the Material/(m/s) | 5890.0 |
Laws of the Configuration | Linear at 00 |
Focus Depth/mm | 9.53 |
First Element | 1 |
Last Element | 64 |
Number of Elements | 8 |
Element Step | 1 |
Sonic Type | Longitudinal Wave |
Scanning Mode | Encoder |
Imaging Display | A-B, A-C |
Maximum Scan Speed/(mm/s) | 199.84 |
Resolution of the Encoder(step/mm) | 19.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Guo, Y.; Geng, L.; Wu, J.; Zhang, F.; Wang, W.; Liu, Y. Acoustic Field of a Linear Phased Array: A Simulation Study of Ultrasonic Circular Tube Material. Sensors 2019, 19, 2352. https://doi.org/10.3390/s19102352
Xiao Z, Guo Y, Geng L, Wu J, Zhang F, Wang W, Liu Y. Acoustic Field of a Linear Phased Array: A Simulation Study of Ultrasonic Circular Tube Material. Sensors. 2019; 19(10):2352. https://doi.org/10.3390/s19102352
Chicago/Turabian StyleXiao, Zhitao, Yongmin Guo, Lei Geng, Jun Wu, Fang Zhang, Wen Wang, and Yanbei Liu. 2019. "Acoustic Field of a Linear Phased Array: A Simulation Study of Ultrasonic Circular Tube Material" Sensors 19, no. 10: 2352. https://doi.org/10.3390/s19102352
APA StyleXiao, Z., Guo, Y., Geng, L., Wu, J., Zhang, F., Wang, W., & Liu, Y. (2019). Acoustic Field of a Linear Phased Array: A Simulation Study of Ultrasonic Circular Tube Material. Sensors, 19(10), 2352. https://doi.org/10.3390/s19102352