Joint Resource Optimization in Simultaneous Wireless Information and Power Transfer (SWIPT) Enabled Multi-Relay Internet of Things (IoT) System
Abstract
:1. Introduction
- We consider a multi-relay OFDM based IoT system, in which the SWIPT-enabled relay can decode information and harvest energy simultaneously. Therefore, the splitter does not have to be installed in the relay, which is necessary in the common algorithm using PS or TS protocol. It can simplify the deployment and administration of the IoT system.
- We formulate a scheme by optimizing power and subcarrier allocation with the aim at maximizing the transmission rate, and employ the time-sharing strategy and Lagrange dual method to solve this optimization problem.
- Simulation results illustrate the effectiveness of our algorithm. By observing the transmission rate, it illustrates that the proposed algorithm has better performance than other algorithms.
2. Review Conclusion
3. System Model and Problem Formulation
4. Optimal Resource Allocation
4.1. Optimizing the Dual Function
4.2. Optimizing Primal Variables at a Given Dual Point
Algorithm 1 Proposed Algorithm for P2 |
|
5. Simulation Results and Analysis
Algorithm 2 |
|
Algorithm 3 |
|
Algorithm 4 |
|
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hu, S.; Yu, B.; Qian, C.; Xiao, Y.; Xiong, Q.; Sun, C.J.; Gao, Y. Nonorthogonal interleave-grid multiple access scheme for industrial internet of things in 5G network. IEEE Trans. Ind. Inform. 2018, 14, 5436–5446. [Google Scholar] [CrossRef]
- Lu, W.D.; Hu, S.; Liu, X.; He, C.; Gong, Y. Incentive mechanism based cooperative spectrum sharing for OFDM cognitive IoT network. IEEE Trans. Netw. Sci. Eng. 2019. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef]
- Pan, J.; McElhannon, J. Future edge cloud and edge computing for internet of things applications. IEEE Internet Things J. 2018, 5, 439–449. [Google Scholar] [CrossRef]
- Jia, G.; Han, G.; Jiang, J.; Liu, L. Green routing protocols for wireless multimedia sensor networks. IEEE Wirel. Commun. 2016, 23, 140–146. [Google Scholar]
- Lu, W.D.; Fang, S.Z.; Hu, S.; Liu, X.; Li, B.; Na, Z.Y.; Gong, Y. Energy efficiency optimization for OFDM based 5G wireless networks with simultaneous wireless information and power transfer. IEEE Access 2018, 6, 75937–75946. [Google Scholar] [CrossRef]
- Krikidis, I.; Timotheou, S.; Nikolaou, S.; Zheng, G.; Ng, D.W.K.; Schober, R. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag. 2014, 52, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhang, Z.; Chen, H.; Zhang, H. Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag. 2015, 53, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Bi, S.; Qian, L.; Xia, Z. Adaptive scheduling in energy harvesting sensor networks for green cities. IEEE Trans. Ind. Inform. 2018, 14, 1575–1584. [Google Scholar] [CrossRef]
- Zhou, S.; Gong, J.; Zhou, Z.; Chen, W.; Niu, Z. Green delivery: Proactive content caching and push with energy-harvesting-based small cells. IEEE Commun. Mag. 2015, 53, 142–149. [Google Scholar] [CrossRef]
- Lu, W.D.; Gong, Y.; Wu, J.Y.; Peng, H.; Hua, J.Y. Simultaneous wireless information and power transfer based on joint subcarrier and power allocation in OFDM systems. IEEE Access 2017, 5, 2763–2770. [Google Scholar] [CrossRef]
- Na, Z.Y.; Wang, Y.Y.; Li, X.T.; Xia, J.J.; Liu, X.; Xiong, M.D.; Lu, W.D. Subcarrier allocation based simultaneous wireless information and power transfer algorithm in 5G cooperative OFDM communication systems. Phys. Commun. 2018, 29, 164–170. [Google Scholar] [CrossRef]
- Boshkovska, E.; Ng, D.W.K.; Zlatanov, N.; Schober, R. Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun. Lett. 2015, 19, 2082–2085. [Google Scholar] [CrossRef]
- Clerckx, B.; Zhang, R.; Schober, R.; Ng, D.W.K.; Kim, D.I.; Poor, H.V. Fundamentals of wireless information and power transfer: From RF energy harvester models to signal and system designs. IEEE J. Sel. Areas Commun. 2019, 37, 4–33. [Google Scholar] [CrossRef]
- Xiong, K.; Wang, B.; Liu, K.J.R. Rate-Energy Region of SWIPT for MIMO Broadcasting Under Nonlinear Energy Harvesting Model. IEEE Trans. Wirel. Commun. 2017, 16, 5147–5161. [Google Scholar] [CrossRef]
- Lu, W.D.; Gong, Y.; Ting, S.H.; Wu, X.L.; Zhang, N.T. Cooperative OFDM relaying for opportunistic spectrum sharing protocol design and resource allocation. IEEE Tans. Wirel. Commun. 2012, 11, 2126–2135. [Google Scholar]
- Qian, L.P.; Feng, G.; Leung, V.C.M. Optimal transmission policies for relay communication networks with ambient energy harvesting relays. IEEE J. Sel. Areas Commun. 2016, 34, 3754–3768. [Google Scholar] [CrossRef]
- Zhao, N.; Lu, W.D.; Sheng, M.; Chen, Y.F.; Tang, J.; Yu, F.R.; Wang, K.K. UAV-assisted emergency networks in disasters. IEEE Wirel. Commun. 2019, 26, 45–51. [Google Scholar] [CrossRef]
- Lu, W.D.; Wang, J. Opportunistic spectrum sharing based on full-duplex cooperative OFDM relaying. IEEE Commun. Lett. 2014, 18, 241–244. [Google Scholar] [CrossRef]
- Liu, Y. Joint resource allocation in SWIPT-based multiantenna decode-and-forward relay networks. IEEE Trans. Veh. Technol. 2017, 66, 9192–9200. [Google Scholar] [CrossRef]
- Gurjar, D.S.; Nguyen, H.H.; Tuan, H.D. Wireless information and power transfer for IoT applications in overlay cognitive radio networks. IEEE Internet Things J. 2019, 6, 3257–3270. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Gursoy, M.C.; Schmeink, A. SWIPT-enabled relaying in IoT networks operating with finite blocklength codes. IEEE J. Sel. Areas Commun. 2019, 37, 74–88. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Q. Energy efficiency optimisation for SWIPT AF two-way relay networks. Electron. Lett. 2017, 53, 436–438. [Google Scholar] [CrossRef]
- Ancora, A.; Toufik, I.; Bury, A.; Slock, D. Orthogonal Frequency Division Multiple Access (OFDMA); Wiley Telecom: Hoboken, NJ, USA, 2011; p. 792. [Google Scholar]
- Dong, Z.; Fan, P.; Panayirci, E.; Lei, X. Conditional power and rate adaptation for MQAM/OFDM systems under CFO with perfect and imperfect channel estimation errors. IEEE Trans. Veh. Technol. 2015, 64, 5042–5055. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, R.; Ho, C.K. Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wirel. Commun. 2014, 13, 2282–2294. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y. Energy harvesting for physical-layer security in OFDMA networks. IEEE Trans. Inform. Forensics Secur. 2016, 11, 154–162. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, D.K.; Choi, W. Rate-energy region in wireless information and power transfer: New receiver architecture and practical modulation. IEEE Trans. Commun. 2018, 66, 2751–2761. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X. Information and energy cooperation in OFDM relaying: Protocols and optimization. IEEE Trans. Veh. Technol. 2016, 65, 5088–5098. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, K.; Pang, L.; Han, R.; Li, Y.; Liang, S.; Luan, Y.; Ren, G. Multi-dimensional resource optimization for incremental AF-OFDM systems with RF energy harvesting relay. IEEE Trans. Veh. Technol. 2019, 68, 613–627. [Google Scholar] [CrossRef]
- Cheng, G.; Xu, W.; Chen, C.; Wang, L. SWIPT schemes for carrier index differential chaos shift keying modulation: A new look at the inactive carriers. IEEE Trans. Veh. Technol. 2019, 68, 2557–2570. [Google Scholar] [CrossRef]
- Lee, K.; Sung, H.; Park, E.; Lee, I. Joint optimization for one and two-way MIMO AF multiple-relay systems. IEEE Trans. Wirel. Commun. 2010, 9, 3671–3681. [Google Scholar] [CrossRef]
- Yu, W.; Lui, R. Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Trans. Commun. 2006, 54, 1310–1322. [Google Scholar] [CrossRef]
- Mu, H.; Tao, M.; Dang, W.; Xiao, Y. Joint subcarrier-relay assignment and power allocation for decode-and-forward multi-relay OFDM systems. In Proceedings of the 2009 Fourth International Conference on Communications and Networking in China, Xi’an, China, 26–28 August 2009; pp. 1–6. [Google Scholar]
- Dang, W.; Tao, M.; Mu, H.; Huang, J. Subcarrier-pair based resource allocation for cooperative multi-relay OFDM systems. IEEE Trans. Wirel. Commun. 2010, 9, 1640–1649. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Boyd, S.; Mutapcic, A. Subgradient Methods; Notes for EE364b, Winter 2006-07; Standford University: Standford, CA, USA, 2008. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Liu, G.; Si, P.; Zhang, G.; Li, B.; Peng, H. Joint Resource Optimization in Simultaneous Wireless Information and Power Transfer (SWIPT) Enabled Multi-Relay Internet of Things (IoT) System. Sensors 2019, 19, 2536. https://doi.org/10.3390/s19112536
Lu W, Liu G, Si P, Zhang G, Li B, Peng H. Joint Resource Optimization in Simultaneous Wireless Information and Power Transfer (SWIPT) Enabled Multi-Relay Internet of Things (IoT) System. Sensors. 2019; 19(11):2536. https://doi.org/10.3390/s19112536
Chicago/Turabian StyleLu, Weidang, Guangzhe Liu, Peiyuan Si, Guanghua Zhang, Bo Li, and Hong Peng. 2019. "Joint Resource Optimization in Simultaneous Wireless Information and Power Transfer (SWIPT) Enabled Multi-Relay Internet of Things (IoT) System" Sensors 19, no. 11: 2536. https://doi.org/10.3390/s19112536