Precise Point Positioning Using World’s First Dual-Frequency GPS/GALILEO Smartphone
Abstract
:1. Introduction
2. GPS/Galileo PPP Mathematical Model
3. Extended Kalman Filter Mathematical Models and Implementation
4. Data Collection
5. Smartphone’s Data Quality
6. Results and Analysis
6.1. GNSS Differential Solution
6.2. PPP Positioning Performance Using the Smartphone
6.3. Smartphone Real-time PPP Solution
7. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kouba, J.; Héroux, P. Precise point positioning using IGS orbit and clock products. GPS Solut. 2001, 5, 12–28. [Google Scholar] [CrossRef]
- de Bakker, P.F.; Tiberius, C.C. Real-time multi-GNSS single-frequency precise point positioning. GPS Solut. 2017, 21, 1791–1803. [Google Scholar] [CrossRef] [Green Version]
- European Global Satellite Navigation System Agency. WhitePaper on Using GNSS Raw Measurements on Android Devices; Luxembourg: Publications Office of the European Union, 2017. [Google Scholar]
- Realini, E.; Caldera, S.; Pertusini, L.; Sampietro, D. Precise gnss positioning using smart devices. Sensors 2017, 17, 2434. [Google Scholar] [CrossRef] [PubMed]
- Dabove, P.; Di Pietra, V. Towards high accuracy GNSS real-time positioning with smartphones. Adv. Space Res. 2018, 63, 94–102. [Google Scholar] [CrossRef]
- Banville, S.; Van Diggelen, F. Precise positioning using raw GPS measurements from Android smartphones. GPS World 2016, 27, 43–48. [Google Scholar]
- Gill, M.; Bisnath, S.; Aggrey, J.; Seepersad, G. Precise point positioning (PPP) using low-cost and ultra-low-cost GNSS receivers. In Proceedings of the ION GNSS, Portland, OR, USA, 25–29 September 2017; pp. 226–236. [Google Scholar]
- GPS World Staff. Dual-Frequency GNSS Smartphone Hits the Market GPS World [Online]. 2018. Available online: https://www.gpsworld.com/dual-frequency-gnss-smartphone-hits-the-market/ (accessed on 10 October 2018).
- Burch, T. Surveyors and Smart Cities—Partners in Technology GPS World [Online]. 2019. Available online: https://www.gpsworld.com/surveyors-and-smart-cities-partners-in-technology/ (accessed on 10 March 2019).
- Sattar, S.; Li, S.; Chapman, M. Road surface monitoring using smartphone sensors: A review. Sensors 2018, 18, 3845. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamad, A.; Moussa, A.; El-Sheimy, N. Video-based Mobile Mapping System Using Smartphones. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Scie. 2014, 40, 13. [Google Scholar] [CrossRef]
- IGS. International GNSS Real-time Service IGS [Online]. 2019. Available online: http://www.igs.org/rts (accessed on 24 February 2019).
- Li, X.; Zhang, X.; Ren, X.; Fritsche, M.; Wickert, J.; Schuh, H. Precise positioning with current multi-constellation global navigation satellite systems: GPS, GLONASS, Galileo and BeiDou. Sci. Rep. 2015, 5, 8328. [Google Scholar] [CrossRef] [PubMed]
- Afifi, A.; El-Rabbany, A. Precise point positioning using triple GNSS constellations in various modes. Sensors 2016, 16, 779. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.; Herring, T.; Shapiro, I.; Rogers, A.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2015, 19, 433–441. [Google Scholar] [CrossRef]
- Kouba, J. A Guide to Using International Gnss Service (IGS) Products IGS [Online]. 2015. Available online: https://kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products (accessed on 17 December 2018).
- Noureldin, A.; Karamat, T.B.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Rabbou, M.A.; El-Rabbany, A. Precise point positioning using multi-constellation GNSS observations for kinematic applications. J. Appl. Geod. 2015, 9, 15–26. [Google Scholar] [CrossRef]
- Cai, C.; Gao, Y. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut. 2013, 17, 223–236. [Google Scholar] [CrossRef]
- Bona, P.; Tiberius, C. In An experimental comparison of noise characteristics of seven high-end dual frequency GPS receiver-sets. In IEEE 2000. Position Location and Navigation Symposium (Cat. No. 00CH37062); IEEE: Piscataway, NJ, USA, 2000; pp. 237–244. [Google Scholar]
- Nottingham Scientific Limited (NSL). NSL Launches a New Free Android App as Part of FLAMINGO–Discover RinexON. 2018. Available online: https://www.flamingognss.com/rinexon (accessed on 10 October 2018).
- Spaceopal. Spaceopal Launches Its Precise Point Positioning Service NAVCAST. 2018. Available online: https://spaceopal.com (accessed on 20 December 2018).
- Hauschild, A.; Montenbruck, O. In Real-time clock estimation for precise orbit determination of LEO-satellites. In Proceedings of the ION GNSS Meeting, Savannah, GA, USA, 16–19 September 2008; p. 581. [Google Scholar]
- Wermuth, M.; Hauschild, A.; Montenbruck, O.; Kahle, R. TerraSAR-X precise orbit determination with real-time GPS ephemerides. Adv. Space Res. 2012, 50, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Z.; Ge, M.; Neitzel, F.; Wang, Z.; Yuan, H. Validation and assessment of multi-gnss real-time precise point positioning in simulated kinematic mode using igs real-time service. Remote Sens. 2018, 10, 337. [Google Scholar] [CrossRef]
- Rao, B.R.; Kunysz, W.; McDonald, K. GPS/GNSS Antennas; Artech House: Norwood, MA, USA, 2013. [Google Scholar]
Receiver Type | GPS | Galileo |
---|---|---|
Trimble R9 | C1C and L1C, C2W and L2W | C1C and L1C, C5X and L5X |
smartphone | C1C and L1C, C5X and L5X | C1C and L1C, C5X and L5X |
Receiver Type | DGNSS ITRF Solution (m) | ||
---|---|---|---|
X | Y | Z | |
Geodetic | 85,3516.578 | -454,1447.832 | 438,1617.828 |
Smartphone | 85,3516.507 | -454,1447.881 | 438,1617.659 |
Receiver Type | dE (m) | dN (m) | dU (m) | |||
---|---|---|---|---|---|---|
Mean | RMS | Mean | RMS | Mean | RMS | |
Geodetic | 0.061 | 0.208 | 0.056 | 0.109 | 0.100 | 0.117 |
Smartphone | 0.364 | 0.507 | 0.310 | 0.473 | 0.305 | 0.559 |
PPP Solution | dE (m) | dN (m) | dU (m) | |||
---|---|---|---|---|---|---|
Mean | RMS | Mean | RMS | Mean | RMS | |
post-processed | 0.364 | 0.507 | 0.310 | 0.473 | 0.305 | 0.559 |
real-time | 0.430 | 0.558 | 0.429 | 0.542 | 0.424 | 0.621 |
PPP Solution | dE (m) | dN (m) | dU (m) | |||
---|---|---|---|---|---|---|
Mean | RMS | Mean | RMS | Mean | RMS | |
post-processed | 0.582 | 0.668 | 0.325 | 0.614 | 0.466 | 0.589 |
real-time | 0.650 | 0.844 | 0.390 | 0.647 | 0.555 | 0.661 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmezayen, A.; El-Rabbany, A. Precise Point Positioning Using World’s First Dual-Frequency GPS/GALILEO Smartphone. Sensors 2019, 19, 2593. https://doi.org/10.3390/s19112593
Elmezayen A, El-Rabbany A. Precise Point Positioning Using World’s First Dual-Frequency GPS/GALILEO Smartphone. Sensors. 2019; 19(11):2593. https://doi.org/10.3390/s19112593
Chicago/Turabian StyleElmezayen, Abdelsatar, and Ahmed El-Rabbany. 2019. "Precise Point Positioning Using World’s First Dual-Frequency GPS/GALILEO Smartphone" Sensors 19, no. 11: 2593. https://doi.org/10.3390/s19112593