Experimental and Numerical Investigation of a Photoacoustic Resonator for Solid Samples: Towards a Non-Invasive Glucose Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.1.1. T-cell Resonator
2.1.2. Microphone Operation
2.2. Simulation Models
2.2.1. Amplitude Mode Expansion Model
2.2.2. Viscothermal Model
3. Results and Discussion
3.1. Measurement
3.2. Comparison of the Simulation Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elia, A.; Lugarà, P.M.; Di Franco, C.; Spagnolo, V. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources. Sensors 2009, 9, 9616–9628. [Google Scholar] [CrossRef] [PubMed]
- Pleitez, M.A.; Lieblein, T.; Bauer, A.; Hertzberg, O.; von Lilienfeld-Toal, H.; Mäntele, W. Windowless ultrasound photoacoustic cell for in vivo mid-IR spectroscopy of human epidermis: Low interference by changes of air pressure, temperature, and humidity caused by skin contact opens the possibility for a non-invasive monitoring of glucose in the interstitial fluid. Rev. Sci. Instrum. 2013, 84, 084901. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, M.; Tavakoli, A.; Taheri, M.; Saghafifar, H. Design, simulation and structural optimization of a longitudinal acoustic resonator for trace gas detection using laser photoacoustic spectroscopy (LPAS). Opt. Laser Technol. 2012, 42, 699–854. [Google Scholar] [CrossRef]
- Sharma, R.C.; Kumar, S.; Gupta, S.; Srivastava, H.B. Ultrasonic standoff photoacoustic sensor for the detection of explosive and hazardous molecules. Def. Sci. J. 2018, 68, 401–405. [Google Scholar] [CrossRef]
- Arabul, M.U.; Heres, H.M.; Rutten, M.C.M.; van de Voose, F.N.; Lopata, R.G. Investigation on the effect of spatial compounding on photoacoustic images of carotid plaques in the in vivo available rotational range. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Kosterev, A.A.; Bakhirkin, Y.A.; Curl, R.F.; Tittel, F.K. Quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2002, 27, 1902–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Guo, X.; Yi, H.; Chen, W.; Zhang, W.; Gao, X. Off-beam quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2009, 34, 1594–1596. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Wu, H.; Zheng, H.; Liu, Y.; Liu, X.; Jiang, W.; Zhang, L.; Ma, W.; Ren, W.; Yin, W.; et al. Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2014, 39, 2479–2482. [Google Scholar] [CrossRef] [PubMed]
- Duggen, L.; Lopes, N.; Willatzen, M.; Rubahn, H.G. Finite element simulation of photoacoustic pressure in a resonant photoacoustic cell using lossy boundary conditions. Int. J. Thermophys. 2011, 32, 774–785. [Google Scholar] [CrossRef]
- Glière, A.; Rouxel, J.; Brun, M.; Parvitte, B.; Zéninari, V.; Nicolleti, S. Challenges in the design and fabrication of a lab-on-chip photoacoustic gas sensor. Sensors 2014, 14, 957–974. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.; Wolff, M.; Kost, B.; Groninga, H. Finite element calculation of photoacoustic signals. Appl. Opt. 2007, 46, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.M.; Ahn, C.; Jeong, E.; Kim, B.K. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci. Rep. 2018, 8, 1059. [Google Scholar] [CrossRef] [PubMed]
- Wolff, M.; Kost, B.; Baumann, B. Shape-optimized photoacoustic cell: Numerical consolidation and experimental confirmation. Int. J. Thermophys. 2012, 33, 1953–1959. [Google Scholar] [CrossRef]
- Lim, C.K.; Lederle, J. Validierung Von Photoakustischen Zellen; Master’s studies report; Hamburg University of Applied Science: Hamburg, Germany, 2017. [Google Scholar]
- Baumann, B.; Wolff, M.; Teschner, M. Open photoacoustic cell for blood sugar measurement: Numerical calculation of frequency response. arXiv 2005, arXiv:1507.05189. [Google Scholar]
- VDI Gesellschaft. VDI-Wärmeatlas; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-662-10743-0. [Google Scholar]
- COMSOL Multiphysics®. Acoustics Module User’s Guide; Comsol Inc.: Burlington, MA, USA, 2017; pp. 384–403. [Google Scholar]
- MATLAB-Homepage. Available online: https://www.mathworks.com (accessed on 1 August 2018).
Density | |
---|---|
Sound velocity | 343.2 m/s |
Viscosity | 1.814 × 10−5 Pa s |
Coefficient of heat conduction | 2.58 × 10−2 W/m K |
Specific heat capacity at constant volume | 7.1816 × 102 J/kg K |
Specific heat capacity at constant pressure | 1.0054 × 103 J/kg K |
11.2 | 80 | 19 |
22.2 | 123 | 34 |
44.3 | 211 | 55 |
52.9 | 353 | 124 |
60.7 | 304 | 80 |
Location of Antinodes | |||
---|---|---|---|
9.500 | 2.43 | ||
11.200 | 0.91 | ||
22.200 | 0.72 | ||
29.050 | 2.23 | ||
33.400 | 0.59 | ||
34.200 | 0.97 | ||
44.300 | 0.68 | ||
46.550 | 1.42 | ||
49.200 | 1.30 | ||
49.500 | 1.27 | ||
52.900 | 0.60 | ||
55.350 | 0.47 | ||
56.500 | 0.49 | ||
60.700 | 0.65 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Busaidy, S.; Baumann, B.; Wolff, M.; Duggen, L.; Bruhns, H. Experimental and Numerical Investigation of a Photoacoustic Resonator for Solid Samples: Towards a Non-Invasive Glucose Sensor. Sensors 2019, 19, 2889. https://doi.org/10.3390/s19132889
El-Busaidy S, Baumann B, Wolff M, Duggen L, Bruhns H. Experimental and Numerical Investigation of a Photoacoustic Resonator for Solid Samples: Towards a Non-Invasive Glucose Sensor. Sensors. 2019; 19(13):2889. https://doi.org/10.3390/s19132889
Chicago/Turabian StyleEl-Busaidy, Said, Bernd Baumann, Marcus Wolff, Lars Duggen, and Henry Bruhns. 2019. "Experimental and Numerical Investigation of a Photoacoustic Resonator for Solid Samples: Towards a Non-Invasive Glucose Sensor" Sensors 19, no. 13: 2889. https://doi.org/10.3390/s19132889