SASRT: Semantic-Aware Super-Resolution Transmission for Adaptive Video Streaming over Wireless Multimedia Sensor Networks
Abstract
:1. Introduction
2. Related Work
3. System Architecture, Model and Analysis
3.1. System Architecture
3.2. System Model
3.3. Complexity Analysis
3.4. Method
3.5. Proposed Solution
Algorithm 1: Transmission strategy algorithm. |
Require: Initialize video frame {}. Initialize . Identify the scenario of video frame {}. Identify the semantic recognition cost . Assume that the video semantics of a video frame can encode {}. Initialize the cost of bandwidth consumption Calculate the location of semantic recognition by Equation (18).
|
4. Performance Evaluation
4.1. Experimental Method
- Efficiency: A subjective quality assessment method was used. The same video frames under different strategies were compared.
- Throughput: The amount of data successfully transmitted in a unit of time. The greater is the throughput, the larger is the amount of data transmitted per unit time.
- Playback Stability: We measured the video playback instability with the following formula:
4.2. Experimental Result
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- El Kader, M.E.E.D.A.; Youssif, A.A.; Ghalwash, A.Z. Energy aware and adaptive cross-layer scheme for video transmission over wireless sensor networks. IEEE Sens. J. 2016, 16, 7792–7802. [Google Scholar] [CrossRef]
- Wang, H.; Tian, T.; Ma, M.; Wu, J. Joint Compression of Near-Duplicate Videos. IEEE Trans. Multimed. 2017, 19, 908–920. [Google Scholar] [CrossRef]
- Usman, M.; Yang, N.; Jan, M.A.; He, X.; Xu, M.; Lam, K. A Joint Framework for QoS and QoE for Video Transmission over Wireless Multimedia Sensor Networks. IEEE Trans. Mob. Comput. 2018, 17, 746–759. [Google Scholar] [CrossRef]
- Youssif, A.A.A.; Ghalwash, A.Z.; Kader, M.E.E.D.A.E. ACWSN: An adaptive cross layer framework for video transmission over wireless sensor networks. Wirel. Netw. 2015, 21, 2693–2710. [Google Scholar] [CrossRef]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 105–114. [Google Scholar]
- Wang, X.; Yu, K.; Dong, C.; Change Loy, C. Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Kaiming, H.; Georgia, G.; Piotr, D.; Ross, G. Mask R-cnn. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Zhang, B.; Liu, C.H.; Tang, J.; Xu, Z.; Ma, J.; Wang, W. Learning-Based Energy-Efficient Data Collection by Unmanned Vehicles in Smart Cities. IEEE Trans. Ind. Inf. 2018, 14, 1666–1676. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C.H.; Wang, W.; Zhao, J.; Song, Z.; Su, X.; Crowcroft, J.; Leung, K.K. A Survey of Incentive Mechanisms for Participatory Sensing. IEEE Commun. Surv. Tutor. 2015, 17, 918–943. [Google Scholar] [CrossRef]
- Zhang, B.; Gong, X.; Wang, W. Mutual Information Maximization based Collaborative Data Collection with Calibration Constraint. IEEE Access 2019, 7, 2169–3536. [Google Scholar] [CrossRef]
- Tian, Y.; Tang, Z.; Ma, J. Sparse sensing data-based participant selection for people finding. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef]
- Kwon, O.; Choi, S.; Shin, D. Improvement of JPEG XT Floating-Point HDR Image Coding Using Region Adaptive Prediction. IEEE Access 2018, 6, 3321–3335. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, Y.; Wen, J.; Yang, S. Optimized video coding for omnidirectional videos. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo, ICME 2017, Hong Kong, China, 10–14 July 2017; pp. 799–804. [Google Scholar]
- Chung, K.; Huang, Y.; Lin, C.; Fang, J. Novel Bitrate Saving and Fast Coding for Depth Videos in 3D-HEVC. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1859–1869. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Tao, X. Mobile Edge Computing Enhanced Adaptive Bitrate Video Delivery with Joint Cache and Radio Resource Allocation. IEEE Access 2017, 5, 16406–16415. [Google Scholar] [CrossRef]
- Lin, K.; Song, J.; Luo, J.; Ji, W.; Hossain, M.S.; Ghoneim, A. Green video transmission in the mobile cloud networks. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, 159–169. [Google Scholar] [CrossRef]
- Ge, C.; Wang, N.; Chai, W.K.; Hellwagner, H. QoE-Assured 4K HTTP Live Streaming via Transient Segment Holding at Mobile Edge. IEEE J. Sel. Areas Commun. 2018, 36, 1816–1830. [Google Scholar] [CrossRef]
- Graf, M.; Timmerer, C.; Mueller, C. Towards bandwidth efficient adaptive streaming of omnidirectional video over http: Design, implementation, and evaluation. In Proceedings of the 8th ACM on Multimedia Systems Conference, Taipei, Taiwan, 20–23 June 2017; pp. 261–271. [Google Scholar]
- Botsinis, P.; Huo, Y.; Alanis, D.; Babar, Z.; Ng, S.X.; Hanzo, L. Quantum Search-Aided Multi-User Detection of IDMA-Assisted Multi-Layered Video Streaming. IEEE Access 2017, 5, 23233–23255. [Google Scholar] [CrossRef]
- Ye, C.; Gursoy, M.C.; Velipasalar, S. Quality-Driven Resource Allocation for Wireless Video Transmissions Under Energy Efficiency and Delay Constraints. IEEE Access 2018, 6, 43978–43989. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, C.; Ma, J.; Wang, Z.; Wang, Z.; Hu, R. SRLSP: A face image super-resolution algorithm using smooth regression with local structure prior. IEEE Trans. Multimed. 2017, 19, 27–40. [Google Scholar] [CrossRef]
- Zhao, L.; Han, C.; Shu, Y.; Lv, M.; Liu, Y.; Zhou, T.; Yan, Z.; Liu, X. Improved Imaging Performance in Super-Resolution Localization Microscopy by YALL1 Method. IEEE Access 2018, 6, 5438–5446. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Liang, Y.; Pan, Q. Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, Rhode Island, 16–21 June 2012; pp. 2216–2223. [Google Scholar]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Park, J.S.; Soh, J.W.; Cho, N.I. High Dynamic Range and Super-Resolution Imaging From a Single Image. IEEE Access 2018, 6, 10966–10978. [Google Scholar] [CrossRef]
- Li, F.; Bai, H.; Zhao, L.; Zhao, Y. Dual-Streams Edge Driven Encoder-Decoder Network for Image Super-Resolution. IEEE Access 2018, 6, 33421–33431. [Google Scholar] [CrossRef]
- Wang, W.; Ren, C.; He, X.; Chen, H.; Qing, L. Video Super-Resolution via Residual Learning. IEEE Access 2018, 6, 23767–23777. [Google Scholar] [CrossRef]
- Ran, X.; Chen, H.; Zhu, X.; Liu, Z.; Chen, J. DeepDecision: A Mobile Deep Learning Framework for Edge Video Analytics. In Proceedings of the IEEE International Conference on Computer Communications(infocom), Honolulu, HI, USA, 15–19 April 2018. [Google Scholar]
- Caballero, J.; Ledig, C.; Aitken, A.P.; Acosta, A.; Totz, J.; Wang, Z.; Shi, W. Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Index, C.V.N. Global Mobile Data Traffic Forecast Update, 2017–2022. Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html#_Toc953327 (accessed on 12 July 2019).
- Guo, J.; Gong, X.; Liang, J.; Wang, W.; Que, X. An Optimized Hybrid Unicast/Multicast Adaptive Video Streaming Scheme Over MBMS-Enabled Wireless Networks. IEEE Trans. Broadcast. 2018, 64, 791–802. [Google Scholar] [CrossRef]
- Raca, D.; Quinlan, J.J.; Zahran, A.H.; Sreenan, C.J. Beyond Throughput: A 4G LTE Dataset with Channel and Context Metrics. In Proceedings of the ACM Multimedia Systems Conference(MMSys), Amsterdam, The Netherlands, 12–15 June 2018; pp. 460–465. [Google Scholar]
- Sajjadi, M.S.; Schlkopf, B.; Hirsch, M. Enhancenet: Single image super-resolution through automated texture synthesis. In Proceedings of the Computer Vision (ICCV), IEEE International Conference on IEEE, Venice, Italy, 22–29 October 2017; pp. 4501–4510. [Google Scholar]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep laplacian pyramid networks for fast and accurate superresolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Zhao, M.; Gong, X.; Liang, J.; Wang, W.; Que, X.; Guo, Y.; Cheng, S. QoE-driven optimization for cloud-assisted DASH-based scalable interactive multiview video streaming over wireless network. Signal Process. Image Commun. 2017, 57, 157–172. [Google Scholar] [CrossRef]
- Ma, C.; Yang, C.Y.; Yang, X.; Yang, M.H. Learning a No-Reference Quality Metric for Single-Image Super-Rolution. Comput. Vis. Image Underst. 2017, 158, 1–16. [Google Scholar] [CrossRef]
- Wei, X.; Du, J.; Xue, Z.; Liang, M.; Geng, Y.; Xu, X.; Lee, J. A Very Deep Two-stream Network for Crowd Type Recognition. Neurocomputing 2019. [Google Scholar] [CrossRef]
A1 | A2 | A3 | B1 | B1 | B2 | |
---|---|---|---|---|---|---|
Static | 0.804 | 0.7648 | 0.7743 | 0.6996 | 0.9543 | 0.9641 |
Pedestrian | 0.7293 | 0.646 | 0.7106 | 0.7363 | 0.9502 | 0.9555 |
Bus | 0.7436 | 0.6765 | 0.6387 | 0.7572 | 0.9506 | 0.9575 |
Train | 0.8446 | 0.7923 | 0.7238 | 0.5138 | 0.921 | 0.9506 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Gong, X.; Wang, W.; Que, X.; Liu, J. SASRT: Semantic-Aware Super-Resolution Transmission for Adaptive Video Streaming over Wireless Multimedia Sensor Networks. Sensors 2019, 19, 3121. https://doi.org/10.3390/s19143121
Guo J, Gong X, Wang W, Que X, Liu J. SASRT: Semantic-Aware Super-Resolution Transmission for Adaptive Video Streaming over Wireless Multimedia Sensor Networks. Sensors. 2019; 19(14):3121. https://doi.org/10.3390/s19143121
Chicago/Turabian StyleGuo, Jia, Xiangyang Gong, Wendong Wang, Xirong Que, and Jingyu Liu. 2019. "SASRT: Semantic-Aware Super-Resolution Transmission for Adaptive Video Streaming over Wireless Multimedia Sensor Networks" Sensors 19, no. 14: 3121. https://doi.org/10.3390/s19143121