Localized Trajectories for 2D and 3D Action Recognition †
Abstract
:1. Introduction
- A novel 2D Localized Trajectories concept is introduced, which utilizes body pose information in order to spatially group similar trajectories together.
- Localized Trajectories are extended from 2D to 3D thanks to the availability of depth data, which are directly used for 3D motion estimation.
- A novel feature selection concept for a robust codebook construction is introduced.
- An extensive experimental evaluation on several RGB-D datasets is presented to validate the discriminative power of the proposed approach.
2. Related Work
2.1. Dense Trajectories Related Approaches
2.2. Action Recognition from RGB-D Data
3. Background: Dense Trajectories for Action Recognition
4. Localized Trajectories for Action Recognition
Feature Representation
5. 3D Trajectories and Aligned Descriptors
5.1. Scene Flow Estimation Using RGB-D Data
5.2. 3D Localized Trajectories
5.3. Feature Selection for Codebook Construction
6. Experimental Evaluation
6.1. Datasets and Experimental Settings
6.2. Implementation Details
6.3. Performance of 2D Localized Dense Trajectories
6.3.1. 2D Localized Dense Trajectories vs. Dense Trajectories
6.3.2. Comparison with 3D-Based State-of-the-Art Approaches
6.3.3. Limitations of 2D Localized Dense Trajectories
6.4. Performance of 3D Localized Trajectories
6.5. Global BoW vs. Local BoW
6.6. Computational Complexity
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baptista, R.; Antunes, M.; Aouada, D.; Ottersten, B. Anticipating Suspicious Actions using a Small Dataset of Action Templates. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Funchal, Madeira, Portugal, 27–29 January 2018; INSTICC: Setubal, Portugal; SciTePress: Setubal, Portugal, 2018; Volume 5, pp. 380–386. [Google Scholar] [CrossRef]
- Baptista, R.; Antunes, M.; Shabayek, A.E.R.; Aouada, D.; Ottersten, B. Flexible feedback system for posture monitoring and correction. In Proceedings of the 2017 Fourth International Conference on Image Information Processing (ICIIP), Waknaghat, India, 21–23 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Baptista, R.; Antunes, M.; Aouada, D.; Ottersten, B. Video-based Feedback for Assisting Physical Activity. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Porto, Portugal, 27 February 2017; INSTICC: Setubal, Portugal; SciTePress: Setubal, Portugal, 2017; Volume 5, pp. 274–280. [Google Scholar] [CrossRef]
- Song, Y.; Demirdjian, D.; Davis, R. Continuous Body and Hand Gesture Recognition for Natural Human-computer Interaction. ACM Trans. Interact. Intell. Syst. 2012, 2, 5. [Google Scholar] [CrossRef]
- Weinland, D.; Ronfard, R.; Boyer, E. Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 2006, 104, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Bobick, A.F.; Davis, J.W. The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 257–267. [Google Scholar] [CrossRef]
- Wang, H.; Kläser, A.; Schmid, C.; Liu, C. Action recognition by dense trajectories. In Proceedings of the CVPR 2011, Providence, RI, USA, 20–25 June 2011; pp. 3169–3176. [Google Scholar] [CrossRef]
- Li, F.F.; Perona, P. A Bayesian Hierarchical Model for Learning Natural Scene Categories. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 524–531. [Google Scholar] [CrossRef]
- Koperski, M.; Bilinski, P.; Bremond, F. 3D trajectories for action recognition. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 4176–4180. [Google Scholar] [CrossRef]
- Lazebnik, S.; Schmid, C.; Ponce, J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’06), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2169–2178. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Wu, Y.; Yuan, J. Mining actionlet ensemble for action recognition with depth cameras. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1290–1297. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Antunes, M.; Aouada, D.; Ottersten, B. Enhanced trajectory-based action recognition using human pose. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 1807–1811. [Google Scholar] [CrossRef]
- Wang, H.; Schmid, C. Action Recognition with Improved Trajectories. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 3551–3558. [Google Scholar] [CrossRef]
- Wang, L.; Qiao, Y.; Tang, X. Action recognition with trajectory-pooled deep-convolutional descriptors. In Proceedings of the2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4305–4314. [Google Scholar] [CrossRef]
- Jiang, Y.G.; Dai, Q.; Xue, X.; Liu, W.; Ngo, C.W. Trajectory-Based Modeling of Human Actions with Motion Reference Points. In Proceedings of the 12th European Conference on Computer Vision, ECCV ’12, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; Volume Part V, pp. 425–438. [Google Scholar] [CrossRef]
- Ni, B.; Moulin, P.; Yang, X.; Yan, S. Motion Part Regularization: Improving action recognition via trajectory group selection. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3698–3706. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar] [CrossRef]
- Chaudhry, R.; Ravichandran, A.; Hager, G.; Vidal, R. Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2008; pp. 1932–1939. [Google Scholar] [CrossRef]
- Jhuang, H.; Gall, J.; Zuffi, S.; Schmid, C.; Black, M.J. Towards Understanding Action Recognition. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 3192–3199. [Google Scholar] [CrossRef]
- Zhu, F.; Shao, L.; Xie, J.; Fang, Y. From Handcrafted to Learned Representations for Human Action Recognition. Image Vis. Comput. 2016, 55, 42–52. [Google Scholar] [CrossRef]
- Ke, Q.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F. A New Representation of Skeleton Sequences for 3D Action Recognition. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4570–4579. [Google Scholar] [CrossRef]
- Song, S.; Lan, C.; Xing, J.; Zeng, W.; Liu, J. An End-to-end Spatio-temporal Attention Model for Human Action Recognition from Skeleton Data. In Proceedings of the thirty-First AAAI Conference on Artificial Intelligence, AAAI ’17, San Francisco, CA, USA, 4–9 February 2017; AAAI Press: Menlo Park, CA, USA, 2017; pp. 4263–4270. [Google Scholar]
- Ke, Q.; An, S.; Bennamoun, M.; Sohel, F.; Boussaid, F. SkeletonNet: Mining Deep Part Features for 3-D Action Recognition. IEEE Signal Process. Lett. 2017, 24, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Oreifej, O.; Liu, Z. HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 716–723. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Chorowski, J.; Chen, Z.; Wu, Y. Robust 3D Action Recognition with Random Occupancy Patterns. In Proceedings of the 12th European Conference on Computer Vision—ECCV 2012, Florence, Italy, 7–13 October 2012; Part II. Springer: Berlin/Heidelberg, Germany, 2012; Volume 7573, pp. 872–885. [Google Scholar] [CrossRef]
- Xia, L.; Aggarwal, J.K. Spatio-temporal Depth Cuboid Similarity Feature for Activity Recognition Using Depth Camera. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2834–2841. [Google Scholar] [CrossRef]
- Klaeser, A.; Marszalek, M.; Schmid, C. A Spatio-Temporal Descriptor Based on 3D-Gradients. In Proceedings of the British Machine Vision Conference, Leeds, UK, 1–4 September 2008; BMVA Press: Surrey, UK, 2008; pp. 99.1–99.10. [Google Scholar] [CrossRef]
- Ohn-Bar, E.; Trivedi, M.M. Joint Angles Similarities and HOG2 for Action Recognition. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 June 2013; pp. 465–470. [Google Scholar] [CrossRef]
- Foggia, P.; Percannella, G.; Saggese, A.; Vento, M. Recognizing Human Actions by a Bag of Visual Words. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013; pp. 2910–2915. [Google Scholar] [CrossRef]
- Shukla, P.; Biswas, K.K.; Kalra, P.K. Action Recognition using Temporal Bag-of-Words from Depth Maps. In Proceedings of the IEEE International Conference on Machine Vision Applications, Kyoto, Japan, 20–23 May 2013; pp. 41–44. [Google Scholar]
- Yang, X.; Tian, Y. Super Normal Vector for Human Activity Recognition with Depth Cameras. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
- Slama, R.; Wannous, H.; Daoudi, M. Grassmannian Representation of Motion Depth for 3D Human Gesture and Action Recognition. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 3499–3504. [Google Scholar] [CrossRef]
- Rahmani, H.; Mahmood, A.; Huynh, D.; Mian, A. Histogram of Oriented Principal Components for Cross-View Action Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2430–2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanfir, M.; Leordeanu, M.; Sminchisescu, C. The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 1–8 December 2013; pp. 2752–2759. [Google Scholar] [CrossRef]
- Yang, X.; Tian, Y.L. EigenJoints-based action recognition using Naïve-Bayes-Nearest-Neighbor. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 14–19. [Google Scholar] [CrossRef]
- Vemulapalli, R.; Arrate, F.; Chellappa, R. Human Action Recognition by Representing 3D Skeletons as Points in a Lie Group. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 588–595. [Google Scholar] [CrossRef]
- Devanne, M.; Wannous, H.; Berretti, S.; Pala, P.; Daoudi, M.; Del Bimbo, A. 3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold. IEEE Trans. Cybern. 2015, 45, 1340–1352. [Google Scholar] [CrossRef] [PubMed]
- Amor, B.B.; Su, J.; Srivastava, A. Action Recognition Using Rate-Invariant Analysis of Skeletal Shape Trajectories. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1–13. [Google Scholar] [CrossRef]
- Demisse, G.G.; Papadopoulos, K.; Aouada, D.; Ottersten, B. Pose Encoding for Robust Skeleton-Based Action Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; pp. 301–3016. [Google Scholar] [CrossRef]
- Ghorbel, E.; Boutteau, R.; Boonaert, J.; Savatier, X.; Lecoeuche, S. Kinematic Spline Curves: A temporal invariant descriptor for fast action recognition. Image Vis. Comput. 2018, 77, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, Z.; Liu, Z. Action recognition based on a bag of 3D points. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 9–14. [Google Scholar] [CrossRef]
- Farnebäck, G. Two-frame Motion Estimation Based on Polynomial Expansion. In Proceedings of the 13th Scandinavian Conference on Image Analysis, SCIA ’03, Halmstad, Sweden, 29 June–2 July 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 363–370. [Google Scholar] [CrossRef]
- Raptis, M.; Kokkinos, I.; Soatto, S. Discovering discriminative action parts from mid-level video representations. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1242–1249. [Google Scholar] [CrossRef]
- Jaimez, M.; Souiai, M.; Gonzalez-Jimenez, J.; Cremers, D. A primal-dual framework for real-time dense RGB-D scene flow. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 16–30 May 2015; pp. 98–104. [Google Scholar] [CrossRef]
- Quiroga, J.; Brox, T.; Devernay, F.; Crowley, J.L. Dense Semi-Rigid Scene Flow Estimation from RGBD images. In Proceedings of the ECCV 2014—European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar] [CrossRef]
- Sun, D.; Sudderth, E.B.; Pfister, H. Layered RGBD scene flow estimation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 548–556. [Google Scholar] [CrossRef]
- Al Ismaeil, K.; Aouada, D.; Solignac, T.; Mirbach, B.; Ottersten, B. Real-Time Enhancement of Dynamic Depth Videos with Non-Rigid Deformations. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2045–2059. [Google Scholar] [CrossRef] [PubMed]
- Al Ismaeil, K.; Aouada, D.; Mirbach, B.; Ottersten, B. Enhancement of dynamic depth scenes by upsampling for precise super-resolution (UP-SR). Comput. Vis. Image Underst. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Holte, M.B.; Chakraborty, B.; Gonzalez, J.; Moeslund, T.B. A Local 3-D Motion Descriptor for Multi-View Human Action Recognition from 4-D Spatio-Temporal Interest Points. IEEE J. Sel. Top. Signal Process. 2012, 6, 553–565. [Google Scholar] [CrossRef]
- Yu, G.; Liu, Z.; Yuan, J. Discriminative Orderlet Mining for Real-Time Recognition of Human-Object Interaction. In Computer Vision—ACCV 2014; Cremers, D., Reid, I., Saito, H., Yang, M.H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 50–65. [Google Scholar] [CrossRef]
- Bloom, V.; Argyriou, V.; Makris, D. Hierarchical Transfer Learning for Online Recognition of Compound Actions. Comput. Vis. Image Underst. 2016, 144, 62–72. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, J.; Sener, O.; Selman, B.; Savarese, S.; Saxena, A. Watch-n-Patch: Unsupervised Learning of Actions and Relations. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 467–481. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, S.; Re, G.L.; Morana, M. Human Activity Recognition Process Using 3-D Posture Data. IEEE Trans. Hum. Mach. Syst. 2015, 45, 586–597. [Google Scholar] [CrossRef]
- Müller, M.; Röder, T. Motion Templates for Automatic Classification and Retrieval of Motion Capture Data. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’06), Vienna, Austria, 2–4 September 2006; Eurographics Association: Aire-la-Ville, Switzerland, 2006; pp. 137–146. [Google Scholar]
- Chen, W.; Guo, G. TriViews: A general framework to use 3D depth data effectively for action recognition. J. Vis. Commun. Image Represent. 2015, 26, 182–191. [Google Scholar] [CrossRef]
- Luo, Z.; Peng, B.; Huang, D.; Alahi, A.; Fei-Fei, L. Unsupervised Learning of Long-Term Motion Dynamics for Videos. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7101–7110. [Google Scholar] [CrossRef]
- Jalal, A.; Kim, Y.H.; Kim, Y.J.; Kamal, S.; Kim, D. Robust Human Activity Recognition from Depth Video Using Spatiotemporal Multi-fused Features. Pattern Recogn. 2017, 61, 295–308. [Google Scholar] [CrossRef]
- Leightley, D.; Li, B.; McPhee, J.S.; Yap, M.H.; Darby, J. Exemplar-Based Human Action Recognition with Template Matching from a Stream of Motion Capture. In Image Analysis and Recognition; Campilho, A., Kamel, M., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 12–20. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Wang, Y.; Wang, H. Motion Retrieval Using Weighted Graph Matching. Soft Comput. 2015, 19, 133–144. [Google Scholar] [CrossRef]
- Li, M.; Leung, H.; Liu, Z.; Zhou, L. 3D human motion retrieval using graph kernels based on adaptive graph construction. Comput. Graph. 2016, 54, 104–112. [Google Scholar] [CrossRef]
- Barnachon, M.; Bouakaz, S.; Boufama, B.; Guillou, E. Ongoing human action recognition with motion capture. Pattern Recognit. 2014, 47, 238–247. [Google Scholar] [CrossRef]
- Fotiadou, E.; Nikolaidis, N. Activity-based methods for person recognition in motion capture sequences. Pattern Recognit. Lett. 2014, 49, 48–54. [Google Scholar] [CrossRef]
- Kishore, P.; Kameswari, P.S.; Niharika, K.; Tanuja, M.; Bindu, M.; Kumar, D.A.; Kumar, E.K.; Kiran, M.T. Spatial Joint features for 3D human skeletal action recognition system using spatial graph kernels. Int. J. Eng. Technol. 2018, 7, 489–493. [Google Scholar] [CrossRef]
- Huang, Z.; Wan, C.; Probst, T.; Gool, L.V. Deep Learning on Lie Groups for Skeleton-Based Action Recognition. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1243–1252. [Google Scholar] [CrossRef]
- Vemulapalli, R.; Chellappa, R. Rolling Rotations for Recognizing Human Actions from 3D Skeletal Data. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 4471–4479. [Google Scholar] [CrossRef]
- Devanne, M.; Berretti, S.; Pala, P.; Wannous, H.; Daoudi, M.; Bimbo, A.D. Motion segment decomposition of RGB-D sequences for human behavior understanding. Pattern Recognit. 2017, 61, 222–233. [Google Scholar] [CrossRef]
- Ahmed, F.; Paul, P.P.; Gavrilova, M.L. Joint-Triplet Motion Image and Local Binary Pattern for 3D Action Recognition Using Kinect. In Proceedings of the 29th International Conference on Computer Animation and Social Agents, CASA ’16, Geneva, Switzerland, 23–25 May 2016; ACM: New York, NY, USA, 2016; pp. 111–119. [Google Scholar] [CrossRef]
- Tian, Y.; Kanade, T.; Cohn, J.F. Evaluation of Gabor-wavelet-based facial action unit recognition in image sequences of increasing complexity. In Proceedings of the Fifth IEEE International Conference on Automatic Face Gesture Recognition, Washington, DC, USA, 21 May 2002; pp. 229–234. [Google Scholar] [CrossRef]
- Xia, L.; Chen, C.; Aggarwal, J.K. View invariant human action recognition using histograms of 3D joints. In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 20–27. [Google Scholar] [CrossRef]
- Varrette, S.; Bouvry, P.; Cartiaux, H.; Georgatos, F. Management of an academic HPC cluster: The UL experience. In Proceedings of the 2014 International Conference on High Performance Computing Simulation (HPCS), Bologna, Italy, 21–25 July 2014; pp. 959–967. [Google Scholar] [CrossRef]
Method | Mean Accuracy |
---|---|
Dynamic Temporal Warping [54] | 54.0% |
Local HON4D [24] | 80.0% |
Moving Pose [34] | 73.8% |
3D Trajectories [9] | 72.0% |
Skeleton only [11] | 68.0% |
Skeleton and LoP [11] | 85.8% |
Naive-Bayes-NN [35] | 73.8% |
TriViews [55] | 83.8% |
Skeletal Shape Trajectories [38] | 70.0% |
Long-Term Motion Dynamics [56] | 86.9% |
Spatiotemporal Multi-fusion [57] | 94.1% |
Dense Trajectories [7] | 64.4% |
3D Dense Trajectories (ours) | 48.8% |
2D Localized Trajectories (ours) | 74.4% |
3D Localized Trajectories (ours) | 76.3% |
Method | Mean Accuracy |
---|---|
Dynamic Time Wrapping [58] | 86.3% |
Weighted Graph Matching [59] | 89.2% |
Adaptive Graph Kernels [60] | 84.8% |
Histogram [61] | 79.5% |
LPP and BoW [62] | 87.5% |
Spatial Graph Kernels [63] | 95.7% |
DL on Lie Group [64] | 89.1% |
Rolling Rotations [65] | 88.0% |
Dense Trajectories [7] | 80.1% |
Skeleton and LoP [11] | 87.3% |
2D Localized Trajectories (ours) | 87.8% |
Method | Mean Accuracy | |
---|---|---|
Same Env. | Cross Env. | |
Moving Pose [34] | 38.4% | 28.5% |
Eigenjoints [35] | 49.1% | 35.7% |
DSTIP and DCSF [26] | 61.7% | 21.5% |
Skeleton and LoP [11] | 66.0% | 59.8% |
Pairwise joint distance [50] | 63.3% | – |
Orderlet [50] | 71.4% | – |
Motion decomposition [66] | 80.9% | – |
Dense Trajectories [7] | 64.3% | 43.8% |
2D Localized Trajectories (ours) | 67.4% | 59.8% |
3D Localized Trajectories (ours) | 64.5% | 38.4% |
Method | Mean Accuracy |
---|---|
Dense Trajectories—office [7] | 68.8% |
Dense Trajectories—kitchen [7] | 56.2% |
2D Localized Trajectories—office (ours) | 71.1% |
2D Localized Trajectories—kitchen (ours) | 81.5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, K.; Demisse, G.; Ghorbel, E.; Antunes, M.; Aouada, D.; Ottersten, B. Localized Trajectories for 2D and 3D Action Recognition. Sensors 2019, 19, 3503. https://doi.org/10.3390/s19163503
Papadopoulos K, Demisse G, Ghorbel E, Antunes M, Aouada D, Ottersten B. Localized Trajectories for 2D and 3D Action Recognition. Sensors. 2019; 19(16):3503. https://doi.org/10.3390/s19163503
Chicago/Turabian StylePapadopoulos, Konstantinos, Girum Demisse, Enjie Ghorbel, Michel Antunes, Djamila Aouada, and Björn Ottersten. 2019. "Localized Trajectories for 2D and 3D Action Recognition" Sensors 19, no. 16: 3503. https://doi.org/10.3390/s19163503
APA StylePapadopoulos, K., Demisse, G., Ghorbel, E., Antunes, M., Aouada, D., & Ottersten, B. (2019). Localized Trajectories for 2D and 3D Action Recognition. Sensors, 19(16), 3503. https://doi.org/10.3390/s19163503