Super-Resolution Reconstruction of Cell Pseudo-Color Image Based on Raman Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Related Work
3.1. Retinex Image Enhancement Technology
3.2. Image Super-Resolution Reconstruction
3.3. Adaptive Guided Filter
3.3.1. Traditional Guided Filter
3.3.2. Adaptive Guided Filter
3.4. Raman Spectral Pseudo-Color Imaging System
Algorithm1. Super-resolution algorithm of cell pseudo-color image based on Raman spectrum. |
Input: Two-dimensional Raman spectroscopy raw data of size (N + 1) × 1024. |
Output: Pseudo-color cell image |
1. Select the peak information of the bands in the N measurement points and arrange them in a matrix form according to the measurement points. |
2. Normalize the peak information to obtain a grayscale image. |
3. Use Retinex enhancement processing on the images. |
4. If (size_a < 20) and (size_b < 20) 5. Interpolate to at least 20 6. Use median filtering 7. Put the gray image into the SRCNN If the pixel size < 320 Use SRCNN to realize the image super-resolution. Until the pixel size is equal to the 320. 8. Use Adaptive Guided filter to smooth the image 9. Use the Jet Index Table to realize the super-resolution pseudo-color imaging |
4. Results and Discussion
4.1. Comparison with A Digital Optical Microscope
4.2. Imaging Contrast and Analysis for Different Bands
4.3. Pseudo-color Super-resolution Algorithm Comparison
4.4. Algorithm Sharpness Comparison
4.5. Imaging Comparison of Witec Instruments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xue, L.I.; Gao, G.M.; Niu, L.Y.; Lin, M.M.; Qin, Z.D.; Liu, J.X.; Yao, H.L. In vivo Raman Imaging of Mice Ear. Chin. J. Anal. Chem. 2012, 40, 1494–1499. [Google Scholar]
- Fan, X.G.; Wang, X.F.; Wang, X.; Xu, Y.J.; Que, J.; Wang, X.D.; He, H.; Li, W.; Zuo, Y. Research of the Raman Signal De-Noising Method Based on Feature Extraction. Guang Pu 2016, 36, 4082–4087. [Google Scholar] [PubMed]
- Chen, Z.; Peng, Y.; Li, Y.; Zhao, J. Detection of Chemical Additives in Food Using Raman Chemical Imaging System. Chem. J. Chin. Univ. 2017, 38, 369–375. [Google Scholar]
- Firkala, T.; Farkas, A.; Vajna, B.; Nagy, Z.K.; Pokol, G.; Marosi, G.; Szilágyi, I.M. Quantification of low drug concentration in model formulations with multivariate analysis using surface enhanced Raman chemical imaging. J. Pharm. Biomed. Anal. 2015, 107, 318–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruckner, M.; Becker, K.; Popp, J.; Frosch, T. Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells. Anal. Chim. Acta 2015, 894, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Schmid, T.; Dariz, P. Chemical imaging of historical mortars by Raman microscopy. Constr. Build. Mater. 2016, 114, 506–516. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Xu, M.; Zong, C.; Ren, B. Study on Apoptosis Process of CaSki via Fast Line. scanning Raman Imaging. Chem. J. Chin. Univ. 2016, 37, 1257–1261. [Google Scholar]
- Bi, Y.; Yang, C.; Chen, Y.; Yan, S.; Yang, G.; Wu, Y.; Zhang, G.; Wang, P. Light Science Applications. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci. Appl. 2018, 7, 81. [Google Scholar] [CrossRef]
- Ding, K.; Ning, C.Z. Light Science Applications. Metallic subwavelength-cavity semiconductor nanolasers. Light Sci. Appl. 2012, 1, e20. [Google Scholar] [CrossRef]
- Lombardini, A.; Mytskaniuk, V.; Sivankutty, S.; Andresen, E.R.; Chen, X.; Wenger, J.; Fabert, M.; Joly, N.; Louradour, F.; Kudlinski, A.; et al. High-resolution multimodal flexible coherent Raman endoscope. Light Sci. Appl. 2018, 7, 10. [Google Scholar] [CrossRef]
- Song, J.; Zhang, X.; Yao, Z.; Hu, C.; Rui, Z.; Yang, Z.; Yuan, L.; Smith, Z.J.; Dong, Z.; Hou, J.G.; et al. Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. Light Sci. Appl. 2017, 6, e17098. [Google Scholar]
- Li, Q.; Zhang, J.; Shi, D.; Liu, Q. Determination of Sudan I in duck feed by microscopic image processing and confocal Raman spectroscopy. Anal. Methods 2016, 8, 5448–5456. [Google Scholar] [CrossRef]
- Chao, K.; Dhakal, S.; Qin, J.; Kim, M.; Peng, Y. A 1064 nm Dispersive Raman Spectral Imaging System for Food Safety and Quality Evaluation. Appl. Sci. 2018, 8, 431. [Google Scholar] [CrossRef]
- Yaseen, T.; Sun, D.-W.; Cheng, J.-H. Raman imaging for food quality and safety evaluation: Fundamentals and applications. Trends Food Sci. Technol. 2017, 62, 177–189. [Google Scholar] [CrossRef]
- Anna, I.; Bartosz, P.; Lech, P.; Halina, A. Novel strategies of Raman imaging for brain tumor research. Oncotarget 2017, 8, 85290–85310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohumi, S.; Lee, H.; Kim, M.; Qin, J.; Cho, B.K. Raman Imaging for the Detection of Adulterants in Paprika Power: A Comparison of Data Analysis Methods. Appl. Sci. 2018, 8, 485. [Google Scholar] [CrossRef]
- Hauke, K.; Kehren, J.; Böhme, N.; Zimmer, S.; Geisler, T. In Situ Hyperspectral Raman Imaging: A New Method to Investigate Sintering Processes of Ceramic Material at High-temperature. Appl. Sci. 2019, 9, 1310. [Google Scholar] [CrossRef]
- Wada, Y.; Enokida, I.; Yamamoto, J.; Furukawa, Y. Raman imaging of carrier distribution in the channel of an ionic liquid-gated transistor fabricated with regioregular poly(3-hexylthiophene). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 197, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Kopeć, M.; Abramczyk, H. Angiogenesis—A crucial step in breast cancer growth, progression and dissemination by Raman imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 338–345. [Google Scholar] [CrossRef]
- Bilo, F.; Zanoletti, A.; Borgese, L.; Depero, L.E.; Bontempi, E. Chemical Analysis of Air Particulate Matter Trapped by a Porous Material, Synthesized from Silica Fume and Sodium Alginate. J. Nanomater. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Cheng, J.X.; Xie, X.S. Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. Science 2015, 350, aaa8870. [Google Scholar] [CrossRef] [PubMed]
- Shinzawa, H.; Awa, K.; Kanematsu, W.; Ozaki, Y. Multivariate data analysis for Raman spectroscopic imaging. J. Raman Spectrosc. 2010, 40, 1720–1725. [Google Scholar] [CrossRef]
- Nascimento, J.M.P.; Dias, J.M.B. Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 898–910. [Google Scholar] [CrossRef]
- Ando, J.; Palonpon, A.F.; Sodeoka, M.; Fujita, K. High-speed Raman imaging of cellular processes. Curr. Opin. Chem. Biol. 2016, 33, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Kim, M.S.; Chao, K.; Schmidt, W.F.; Cho, B.K.; Delwiche, S.R. Line-scan Raman imaging and spectroscopy platform for surface and subsurface evaluation of food safety and quality. J. Food Eng. 2016, 198, 17–27. [Google Scholar] [CrossRef]
- Land, E.H.; Mccann, J.J. Lightness and retinex theory. J. Opt. Soc. Am. 1971, 61, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jobson, D.J.; Rahman, Z.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef]
- Farbman, Z.; Fattal, R.; Lischinski, D. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 2008, 27, 67. [Google Scholar] [CrossRef]
- Yang, Q.; Tan, K.H.; Ahuja, N. In Real-time O(1) bilateral filtering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 557–564. [Google Scholar]
- He, K.; Jian, S.; Tang, X. Guided Image Filtering, European Conference on Computer Vision 2010; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Gastal, E.S.L.; Oliveira, M.M. Domain transform for edge-aware image and video processing. ACM Trans. Graph. 2011, 30, 69. [Google Scholar] [CrossRef]
- Han, Q.Y.; Zhou, P.J. Research on the Method of Eliminating Noise and Background in the Meantime in Detecting Ethanol Contention Based on Raman Spectra. Guang pu 2015, 35, 3406–3409. [Google Scholar] [PubMed]
- Yang, J.; Wright, J.; Huang, T.S.; Ma, Y. Image Super-Resolution via Sparse Representation. IEEE Trans. Image Process. 2010, 19, 2861–2873. [Google Scholar] [CrossRef] [PubMed]
- Zeyde, R.; Elad, M.; Protter, M. On Single Image Scale-Up Using Sparse-Representations. In International Conference on Curves & Surfaces; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Timofte, R.; De, V.; Gool, L.V. Anchored Neighborhood Regression for Fast Example-Based Super-Resolution. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Chang, H.; Yeung, D.Y.; Xiong, Y. Super-resolution through neighbor embedding. In Proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004. [Google Scholar]
- Pan, L.; Peng, G.; Yan, W.; Zheng, H. Single image super resolution based on multiscale local similarity and neighbor embedding. Neurocomputing 2016, 207, 250–263. [Google Scholar] [CrossRef]
- Fiset, P.O.; Soussi-Gounni, A.; Christodoulopoulos, P.; Tulic, M.; Sobol, S.E.; Frenkiel, S.; Lavigne, F.; Lamkhioued, B.; Hamid, Q. A measure for evaluation of the information content in color images. In Proceedings of the IEEE International Conference on Image Processing, Genova, Italy, 14 September 2005. [Google Scholar]
Image Serial Number. | a/c | a/e | c/e |
---|---|---|---|
PSNR | 16.6071 | 20.3542 | 15.5051 |
Image Serial Number. | a/c | a/e | c/e |
---|---|---|---|
PSNR | 5.5294 | 22.1526 | 5.5727 |
Yang et al. | Zeyde et al. | GR | ANR | NE+LS | NE+NNLS | A+ | SRCNN | |
---|---|---|---|---|---|---|---|---|
PSNR(dB) | 38.69 | 38.67 | 40.35 | 40.81 | 38.86 | 38.41 | 39.39 | 40.0989 |
SSIM | 0.9949 | 0.9946 | 0.9957 | 0.9954 | 0.9947 | 0.9942 | 0.9951 | 0.9886 |
NQM | 38.4431 | 40.905 | 44.2627 | 43.1203 | 41.6594 | 41.4006 | 43.2622 | 18.2565 |
GSM | 0.9972 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9993 | 0.9992 | 0.9994 |
MSSIM | 0.9995 | 0.9995 | 0.9997 | 0.9996 | 0.9995 | 0.9995 | 0.9996 | 0.9892 |
Witec// Digital Optical Microscope | Proposed// Digital Optical Microscope | Witec//Proposed | |
---|---|---|---|
First Set | 2.4801 | 0.4356 | 0.4359 |
Second Set | 3.2007 | 0.8530 | 0.8525 |
Third Set | 0.8373 | 0.1104 | 0.1099 |
Fourth Set | 10.1380 | 0.9127 | 1.0141 |
Fifth Set | 21.6456 | 0.2861 | 2.2749 |
Serial Number | Color Image Information Entropy | Red Channel Information Entropy | Green Channel Information Entropy | Blue Channel Information Entropy |
---|---|---|---|---|
(a) | 4.3864 | 5.9122 | 3.5972 | 2.4055 |
(b) | 2.8083 | 1.2747 | 2.0186 | 3.5762 |
(c) | 3.7458 | 2.3701 | 5.2570 | 2.5151 |
(d) | 5.9246 | 7.6206 | 5.8199 | 2.2958 |
(e) | 3.8383 | 2.0761 | 5.0069 | 3.5762 |
(f) | 4.8561 | 4.7647 | 4.4454 | 3.5927 |
Serial Number | Red Channel Information Entropy | Green Channel Information Entropy | Blue Channel Information Entropy | Color Image Information Entropy | Witec Imaging Information Entropy | Witec Imaging Information Entropy Using This Paper’s Color Bar |
---|---|---|---|---|---|---|
(a) | 3.4060 | 4.3614 | 1.9876 | 3.6124 | 6.7437 | 3.9554 |
(b) | 1.9672 | 4.9585 | 2.6200 | 3.6093 | 4.7354 | 2.9855 |
(c) | 1.6811 | 2.4665 | 3.8548 | 3.1869 | 4.3815 | 2.6852 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zhu, M.; Wang, Y.; Yang, H.; Wu, Y.; Li, B. Super-Resolution Reconstruction of Cell Pseudo-Color Image Based on Raman Technology. Sensors 2019, 19, 4076. https://doi.org/10.3390/s19194076
Yang Y, Zhu M, Wang Y, Yang H, Wu Y, Li B. Super-Resolution Reconstruction of Cell Pseudo-Color Image Based on Raman Technology. Sensors. 2019; 19(19):4076. https://doi.org/10.3390/s19194076
Chicago/Turabian StyleYang, Yifan, Ming Zhu, Yuqing Wang, Hang Yang, Yanfeng Wu, and Bei Li. 2019. "Super-Resolution Reconstruction of Cell Pseudo-Color Image Based on Raman Technology" Sensors 19, no. 19: 4076. https://doi.org/10.3390/s19194076
APA StyleYang, Y., Zhu, M., Wang, Y., Yang, H., Wu, Y., & Li, B. (2019). Super-Resolution Reconstruction of Cell Pseudo-Color Image Based on Raman Technology. Sensors, 19(19), 4076. https://doi.org/10.3390/s19194076