Azimuth Phase Center Adaptive Adjustment upon Reception for High-Resolution Wide-Swath Imaging
Abstract
:1. Introduction
2. Influence of Azimuthal Non-Uniform Sampling and Channel Imbalance
2.1. Influence of Azimuthal Non-Uniform Sampling
2.2. Influence of Channel Imbalance
3. Phase Center Adjustment upon Reception
3.1. System Architecture and Basic Principle
3.2. Effect of Receiving Sub-Aperture Phase Center Adjustment on Azimuth Non-Uniform Sampling
3.3. Suppression of False Target by Adjusting Receiving Sub-Aperture Phase Center
4. Simulation and Performance Analysis
4.1. Effect on Azimuth Non-Uniform Sampling
4.2. Effect of False Target Suppression
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ciuonzo, D. On Time-Reversal Imaging by Statistical Testing. IEEE Signal Process. Lett. 2017, 24, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
- Newey, M.; Benitz, G.R.; Barrett, D.J.; Mishra, S. Detection and Imaging of Moving Targets With LiMIT SAR Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3499–3510. [Google Scholar] [CrossRef]
- Ciuonzo, D.; Carotenuto, V.; Maio, A.D. On Multiple Covariance Equality Testing with Application to SAR Change Detection. IEEE Trans. Signal Process. 2017, 65, 5078–5091. [Google Scholar] [CrossRef]
- Pei, J.; Huang, Y.; Huo, W.; Miao, Y.; Zhang, Y.; Yang, J.J.S. Synthetic Aperture Radar Processing Approach for Simultaneous Target Detection and Image Formation. Sensors 2018, 18, 3377. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Zhang, B.; Zhu, X.X.; Hong, W.; Sun, J.; Wu, Y. L1-Regularization-Based SAR Imaging and CFAR Detection via Complex Approximated Message Passing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3426–3440. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.D.; Amin, M.G.; Himed, B. High-Resolution Passive SAR Imaging Exploiting Structured Bayesian Compressive Sensing. IEEE J. Sel. Top. Signal Process. 2015, 9, 1484–1497. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, W.; Dong, X.; Hu, C.; Sun, Y. GRFT-Based Moving Ship Target Detection and Imaging in Geosynchronous SAR. Remote Sens. 2018, 10, 2002. [Google Scholar] [CrossRef]
- Currie, A.; Brown, M.A. Wide-swath SAR. IEE Proc. F Radar Signal Process. 1992, 139, 122–135. [Google Scholar] [CrossRef]
- Currie, A. Wide-swath SAR imaging with multiple azimuth beams. In Proceedings of the IEEE Colloquium on Synthetic Aperture Radar, London, UK, 29 November 1989. [Google Scholar]
- Li, Z.; Wang, H.; Tao, S.; Zheng, B.J.I.G.; Letters, R.S. Generation of wide-swath and high-resolution SAR images from multichannel small spaceborne SAR systems. IEEE Geosci. Remote Sens. Lett. 2005, 2, 82–86. [Google Scholar] [CrossRef]
- Gebert, N.; Krieger, G.; Moreira, A. Digital Beamforming for HRWS-SAR Imaging: System Design, Performance and Optimization Strategies. In Proceedings of the IEEE International Conference on Geoscience & Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006. [Google Scholar]
- Gebert, N.; Krieger, G.; Moreira, A. Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 564–592. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Xu, J.Z.; Zhang, C.; Yi, J. A novel spectrum reconstruction algorithm for high resolution and wide swath space-borne SAR. In Proceedings of the Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007. [Google Scholar]
- Krieger, G.; Gebert, N.; Moreira, A. SAR Signal Reconstruction from Non-Uniform Displaced Phase Centre Sampling. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Tan, W.; Xu, W.; Huang, P.; Huang, Z.; Qi, Y.; Han, K.J.S. Investigation of Azimuth Multichannel Reconstruction for Moving Targets in High Resolution Wide Swath SAR. Sensors 2017, 17, 1270. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Sun, J.; Hu, Y.; Qi, Y. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory. Sensors 2018, 18, 411. [Google Scholar] [CrossRef] [PubMed]
- Gebert, N.; Krieger, G.J.I.G.; Letters, R.S. Azimuth Phase Center Adaptation on Transmit for High-Resolution Wide-Swath SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2009, 6, 782–786. [Google Scholar] [CrossRef]
- Sun, G.; Xiang, J.; Xing, M.; Yang, J.; Guo, L. A Channel Phase Error Correction Method Based on Joint Quality Function of GF-3 SAR Dual-Channel Images. Sensors 2018, 18, 3131. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, Z.; Liu, Y.; Suo, Z.; Zheng, B. Channel error estimation methods for multi-channel HRWS SAR systems. In Proceedings of the Geoscience & Remote Sensing Symposium, Melbourne, VIC, Australia, 21–26 July 2013. [Google Scholar]
- Guo, X.; Gao, Y.; Wang, K.; Liu, X. Improved channel error calibration method for the azimuth multichannel SAR. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1022–1026. [Google Scholar]
- Berens, P. SAR with ultra-high range resolution using synthetic bandwidth. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999. [Google Scholar]
- Ciuonzo, D.; Romano, G.; Solimene, R. Performance Analysis of Time-Reversal MUSIC. IEEE Trans. Signal Process. 2015, 63, 2650–2662. [Google Scholar] [CrossRef]
- Gangshu, H. Digital Signal Processing: Theoretical Algorithms and Implementation, 2nd ed.; Tsinghua University Press: Beijing, China, 2003; pp. 410–412. [Google Scholar]
Parameter (Azimuth) | Symbol | Value |
---|---|---|
Carrier frequency | 9.6 GHz | |
Carrier wavelength | 0.031 | |
Orbit height | 895 km | |
Sensor velocity | 7560 m/s | |
Overall Rx antenna length | 12.25 m | |
Rx sub-aperture length | 1.75 m | |
Elements number on each sub-aperture | 60 | |
Element size | d | 0.03 m |
Channels number | 7 | |
Desired PRF range | PRF | 1100 Hz–1500 Hz |
Channels | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
before adjusting (m) | 5.250 | 3.500 | 1.750 | 0 | −1.750 | −3.500 | −5.250 |
after adjusting (m) | 5.565 | 3.752 | 1.813 | 0 | −1.855 | −3.710 | −5.502 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Hu, J.; Huang, P.; Tan, W.; Dong, Y. Azimuth Phase Center Adaptive Adjustment upon Reception for High-Resolution Wide-Swath Imaging. Sensors 2019, 19, 4277. https://doi.org/10.3390/s19194277
Xu W, Hu J, Huang P, Tan W, Dong Y. Azimuth Phase Center Adaptive Adjustment upon Reception for High-Resolution Wide-Swath Imaging. Sensors. 2019; 19(19):4277. https://doi.org/10.3390/s19194277
Chicago/Turabian StyleXu, Wei, Jialuo Hu, Pingping Huang, Weixian Tan, and Yifan Dong. 2019. "Azimuth Phase Center Adaptive Adjustment upon Reception for High-Resolution Wide-Swath Imaging" Sensors 19, no. 19: 4277. https://doi.org/10.3390/s19194277
APA StyleXu, W., Hu, J., Huang, P., Tan, W., & Dong, Y. (2019). Azimuth Phase Center Adaptive Adjustment upon Reception for High-Resolution Wide-Swath Imaging. Sensors, 19(19), 4277. https://doi.org/10.3390/s19194277