Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Schematics of the Insole Pressure Sensor
2.2. Fabrication
2.3. Pressure Sensor Test Method
3. Results
3.1. Parameter Study to Design Pressure Sensor
3.2. Pressure Sensor Performance
3.3. Foot Plantar Pressure Measurement System
3.4. Measured Pressure during Gait Cycle
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hung, K.; Zhang, Y.-T.; Tai, B. Wearable medical devices for tele-home healthcare. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; pp. 5384–5387. [Google Scholar]
- Bonato, P. Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng. Med. Biol. Mag. 2003, 22, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, M.M. Dynamic biomechanics of the normal foot and ankle during walking and running. Phys. Ther. 1988, 68, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Edgar, S.R.; Swyka, T.; Fulk, G.; Sazonov, E.S. Wearable shoe-based device for rehabilitation of stroke patients. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3772–3775. [Google Scholar]
- Neaga, F.; Moga, D.; Petreus, D.; Munteanu, M.; Stroia, N. A wireless system for monitoring the progressive loading of lower limb in post-traumatic rehabilitation. In Proceedings of the International Conference on Advancements of Medicine and Health Care through Technology, Cluj-Napoca, Romania, 29 August–2 September 2011; pp. 54–59. [Google Scholar]
- Wada, C.; Sugimura, Y.; Wada, F.; Hachisuka, K.; Ienaga, T.; Kimuro, Y.; Tsuji, T. Development of a rehabilitation support system with a shoe-type measurement device for walking. In Proceedings of the SICE Annual Conference 2010, Taipei, Taiwan, 18–21 August 2010; pp. 2534–2537. [Google Scholar]
- Margolis, D.J.; Knauss, J.; Bilker, W.; Baumgarten, M. Medical conditions as risk factors for pressure ulcers in an outpatient setting. Age Ageing 2003, 32, 259–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hennig, E.M.; Staats, A.; Rosenbaum, D. Plantar pressure distribution patterns of young school children in comparison to adults. Foot Ankle Int. 1994, 15, 35–40. [Google Scholar] [CrossRef]
- Razak, A.; Hadi, A.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot plantar pressure measurement system: A review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, D.; Becker, H.P. Plantar pressure distribution measurements. Technical background and clinical applications. Foot Ankle Surg. 1997, 3, 1–14. [Google Scholar] [CrossRef]
- Saenz-Cogollo, J.; Pau, M.; Fraboni, B.; Bonfiglio, A. Pressure mapping mat for tele-home care applications. Sensors 2016, 16, 365. [Google Scholar] [CrossRef] [Green Version]
- Ahroni, J.H.; Boyko, E.J.; Forsberg, R. Reliability of F-scan in-shoe measurements of plantar pressure. Foot Ankle Surg. 1998, 19, 668–673. [Google Scholar] [CrossRef]
- Bus, S.A.; Ulbrecht, J.S.; Cavanagh, P.R. Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity. Clin. Biomech. 2004, 19, 629–638. [Google Scholar] [CrossRef]
- Cavanagh, P.R.; Hewitt, F., Jr.; Perry, J. In-shoe plantar pressure measurement: A review. Foot 1992, 2, 185–194. [Google Scholar] [CrossRef]
- Chesnin, K.J.; Selby-Silverstein, L.; Besser, M.P. Comparison of an in-shoe pressure measurement device to a force plate: Concurrent validity of center of pressure measurements. Gait Posture 2000, 12, 128–133. [Google Scholar] [CrossRef]
- Hennig, E.M.; Milani, T.L. In-shoe pressure distribution for running in various types of footwear. J. Appl. Biomech. 1995, 11, 299–310. [Google Scholar] [CrossRef]
- Hsiao, H.; Guan, J.; Weatherly, M. Accuracy and precision of two in-shoe pressure measurement systems. Ergonomics 2002, 45, 537–555. [Google Scholar] [CrossRef] [PubMed]
- MacWilliams, B.; Armstrong, P. Clinical applications of plantar pressure measurement in pediatric orthopedics. In Proceedings of the Pediatric Gait: A new millennium in Clinical Care and Motion Analysis Technology, Chicago, IL, USA, 22 July 2000; pp. 143–150. [Google Scholar]
- Orlin, M.N.; McPoil, T.G. Plantar pressure assessment. Phys. Ther. 2000, 80, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Rose, N.E.; Feiwell, L.A.; Cracchiolo, A., III. A method for measuring foot pressures using a high resolution, computerized insole sensor: The effect of heel wedges on plantar pressure distribution and center of force. Foot Ankle 1992, 13, 263–270. [Google Scholar] [CrossRef]
- Savelberg, H.; De Lange, A. Assessment of the horizontal, fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks. Clin. Biomech. 1999, 14, 585–592. [Google Scholar] [CrossRef]
- Shu, L.; Hua, T.; Wang, Y.; Li, Q.; Feng, D.D.; Tao, X. In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 767–775. [Google Scholar]
- Urry, S. Plantar pressure-measurement sensors. Meas. Sci. Technol 1999, 10, R16. [Google Scholar] [CrossRef]
- Wang, W.-C.; Ledoux, W.R.; Sangeorzan, B.J.; Reinhall, P.G. A shear and plantar pressure sensor based on fiber-optic bend loss. J. Rehabil. Res. Dev. 2005, 42, 315–326. [Google Scholar] [CrossRef]
- Woodburn, J.; Helliwell, P. Observations on the F-Scan in-shoe pressure measuring system. Clin. Biomech. 1996, 11, 301–304. [Google Scholar] [CrossRef]
- Wahab, Y. Design and Implementation of MEMS Biomechanical Sensors for Real-Life Measurements of Gait Parameters. Ph.D. Thesis, Victoria University, Melbourne, Australia, 2009. [Google Scholar]
- Karam, V.; Popplewell, P.H.; Shamim, A.; Rogers, J.; Plett, C. A 6.3 GHz BFSK transmitter with on-chip antenna for self-powered medical sensor applications. In Proceedings of the 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Honolulu, HI, USA, 3–5 June 2007; pp. 101–104. [Google Scholar]
- Kim, K.; Floyd, B.; Mehta, J.; Yoon, H.; Hung, C.-M.; Bravo, D.; Dickson, T.; Guo, X.; Li, R.; Trichy, N. The feasibility of on-chip interconnection using antennas. In Proceedings of the 2005 IEEE/ACM International conference on Computer-aided design, San Jose, CA, USA, 6–10 November 2005; pp. 979–984. [Google Scholar]
- Burns, G.T.; Deneweth Zendler, J.; Zernicke, R.F. Validation of a wireless shoe insole for ground reaction force measurement. J. Sports Sci. 2019, 37, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Crea, S.; Donati, M.; De Rossi, S.; Oddo, C.; Vitiello, N. A wireless flexible sensorized insole for gait analysis. Sensors 2014, 14, 1073–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Z.; Li, H.; Xiao, J.; Song, H.; Li, B.; Cai, S.; Chen, Y.; Ma, Y.; Feng, X. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Appl. Mater. Interfaces 2019, 11, 33370–33379. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.B.; Witomska, S.; Aliprandi, A.; Stoeckel, M.A.; Bonini, M.; Ciesielski, A.; Samorì, P. Molecule–Graphene Hybrid Materials with Tunable Mechanoresponse: Highly Sensitive Pressure Sensors for Health Monitoring. Adv. Mater. 2019, 31, 1804600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Li, H.; Wu, K.; Zhang, S.; Li, L. High-performance pressure sensor for monitoring mechanical vibration and air pressure. Polymers 2018, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.-C.; Wang, J.-Y.; Huang, B.-S.; Lin, H.-Y.; Lee, W.C. Dynamic impression insole in rheumatoid foot with metatarsal pain. Clin. Biomech. 2012, 27, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Lane, T.J.; Landorf, K.B.; Bonanno, D.R.; Raspovic, A.; Menz, H.B. Effects of shoe sole hardness on plantar pressure and comfort in older people with forefoot pain. Gait Posture 2014, 39, 247–251. [Google Scholar] [CrossRef]
- Kang, D.; Pikhitsa, P.V.; Choi, Y.W.; Lee, C.; Shin, S.S.; Piao, L.; Park, B.; Suh, K.-Y.; Kim, T.-I.; Choi, M. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 2014, 516, 222. [Google Scholar] [CrossRef]
- Lee, E.; Kim, T.; Suh, H.; Kim, M.; Pikhitsa, P.; Han, S.; Koh, J.-S.; Kang, D. Effect of Metal Thickness on the Sensitivity of Crack-Based Sensors. Sensors 2018, 18, 2872. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Kim, J.; Kang, D.; Jeong, C.; Kim, K.S.; Kim, J.U.; Yoo, P.J.; Kim, T.-I. Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: Effect of crack depth. Adv. Mater. 2016, 28, 8130–8137. [Google Scholar] [CrossRef]
- Adams, R. A review of the stainless steel surface. J. Vac. Sci. Technol. A 1983, 1, 12–18. [Google Scholar] [CrossRef]
- Allen, K.; Alsalim, H. Surface preparation of a stainless steel for adhesive bonding. J. Adhes. 1976, 8, 183–194. [Google Scholar] [CrossRef]
- Concrete Reinforcing Steel Institute. Rust, Mill Scale, and Other Surface Contaminants on Steel Reinforcing Bars. Available online: http://resources.crsi.org/resources/rust-mill-scale-and-other-surface-contaminants-on-steel-reinforcing-bars/ (accessed on 10 December 2019).
- Fulk, G.D.; Edgar, S.R.; Bierwirth, R.; Hart, P.; Lopez-Meyer, P.; Sazonov, E. Identifying activity levels and steps in people with stroke using a novel shoe-based sensor. J. Neurol. Phys. Ther. 2012, 36, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulk, G.D.; Sazonov, E. Using sensors to measure activity in people with stroke. Top. Stroke Rehabil. 2011, 18, 746–757. [Google Scholar] [CrossRef]
- Ngueleu, A.M.; Blanchette, A.K.; Bouyer, L.; Maltais, D.; McFadyen, B.J.; Moffet, H.; Batcho, C.S. Design and Accuracy of an Instrumented Insole Using Pressure Sensors for Step Count. Sensors 2019, 19, 984. [Google Scholar] [CrossRef] [Green Version]
- Gleskova, H.; Wagner, S.; Suo, Z. Failure resistance of amorphous silicon transistors under extreme in-plane strain. Appl. Phys. Lett. 1999, 75, 3011–3013. [Google Scholar] [CrossRef]
- Suo, Z.; Ma, E.; Gleskova, H.; Wagner, S. Mechanics of rollable and foldable film-on-foil electronics. Appl. Phys. Lett. 1999, 74, 1177–1179. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Mei, Z.-X.; Liang, H.-L.; Du, X.-L. Review of flexible and transparent thin-film transistors based on zinc oxide and related materials. Chin. Phys. B 2017, 26, 047307. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, M.; Hong, I.; Kim, T.; Lee, E.; Kim, E.-a.; Ryu, J.-K.; Jo, Y.; Koo, J.; Han, S.; et al. Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor. Sensors 2019, 19, 5504. https://doi.org/10.3390/s19245504
Park J, Kim M, Hong I, Kim T, Lee E, Kim E-a, Ryu J-K, Jo Y, Koo J, Han S, et al. Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor. Sensors. 2019; 19(24):5504. https://doi.org/10.3390/s19245504
Chicago/Turabian StylePark, Jieun, Minho Kim, Insic Hong, Taewi Kim, Eunhan Lee, Eun-a Kim, Jae-Kwan Ryu, YongJin Jo, Jeehoon Koo, Seungyong Han, and et al. 2019. "Foot Plantar Pressure Measurement System Using Highly Sensitive Crack-Based Sensor" Sensors 19, no. 24: 5504. https://doi.org/10.3390/s19245504