Geo-Location Information Aided Spectrum Sensing in Cellular Cognitive Radio Networks †
Abstract
:1. Introduction
2. System Model
2.1. Cellular Cognitive Radio Network
2.2. Signal Model
3. Non-Geo-Location Information Aided Spectrum Sensing
3.1. Conventional Threshold-Test-Based Spectrum Sensing Methods
3.1.1. Single User-Based Energy Detection
3.1.2. Multi-User-Based HDF Sensing
3.2. Machine Learning-Based Spectrum Sensing
4. Geo-Location Information Aided Spectrum Sensing
4.1. Geographical Region-Based Spectrum Status Identification
4.2. WFPD Aided SUE Positioning
4.3. Grid Oriented Spectrum Decision Making
4.3.1. PUT’s Geo-Location Information Aided Spectrum Decision Making
4.3.2. Machine Learning Aided Spectrum Decision Making
Algorithm 1 Geo-location information aided spectrum sensing. |
Input:, , , WFPD. % for the q-th SUE, Output:.
|
5. Simulation and Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mitola, J., III; Maguire, G.Q. Cognitive radio: Making software defined radio more personal. IEEE Pers. Commun. 1999, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Axell, E.; Leus, G.; Larsson, E.G. Overview of spectrum sensing for cognitive radio. In Proceedings of the 2nd International Workshop on Cognitive Information Processing, Elba Island, Italy, 14–16 June 2010; pp. 322–327. [Google Scholar]
- Meena, M.; Bhagari, F.; Rajendran, V. Spectrum sensing using cognitive radio technology. In Proceedings of the International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2017; pp. 1654–1657. [Google Scholar]
- Sun, D.; Song, T.; Gu, B.; Li, X.; Hu, J.; Liu, M. Spectrum sensing and the utilization of spectrum opportunity tradeoff in cognitive radio network. IEEE Commun. Lett. 2016, 20, 2442–2445. [Google Scholar] [CrossRef]
- Awin, F.; Abdel-Raheem, E.; Tepe, K. Blind spectrum sensing approaches for interweaved cognitive radio system: A tutorial and short course. IEEE Commun. Surv. Tutor. 2019, 21, 238–259. [Google Scholar] [CrossRef]
- Urkowitz, H. Energy detection of unknown deterministic signals. Proc. IEEE 1967, 55, 523–531. [Google Scholar] [CrossRef]
- Sobron, I.; Diniz, P.S.R.; Martins, W.A.; Velez, M. Energy detection technique for adaptive spectrum sensing. IEEE Trans. Commun. 2015, 63, 617–627. [Google Scholar] [CrossRef]
- Makarfi, A.U.; Hamdi, K.A. Interference analysis of energy detection for spectrum sensing. IEEE Trans. Veh. Technol. 2013, 62, 2570–2578. [Google Scholar] [CrossRef]
- Gardner, W.A.; Napolitano, A.; Paura, L. Cyclostationarity: Half a century of research. Signal Process. 2006, 86, 639–697. [Google Scholar] [CrossRef]
- Jang, W.M. Blind cyclostationary spectrum sensing in cognitive radios. IEEE Commun. Lett. 2014, 18, 393–396. [Google Scholar] [CrossRef]
- Lunden, J.; Koivunen, V.; Huttunen, A.; Poor, H.V. Collaborative cyclostationary spectrum sensing for cognitive radio systems. IEEE Trans. Signal Process. 2009, 57, 4182–4195. [Google Scholar] [CrossRef]
- Van, T.H.L. Detection, Estimation, and Modulation Theory: Part I; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1968. [Google Scholar]
- Conte, E.; Lops, M.; Ricci, G. Adaptive matched filter detection in spherically invariant noise. IEEE Signal Process. Lett. 1996, 3, 248–250. [Google Scholar] [CrossRef]
- Lin, W.; Liu, K.; Wang, C. Differential matched filter architecture for spread spectrum communication systems. Electron. Lett. 1996, 32, 1539–1540. [Google Scholar] [CrossRef] [Green Version]
- Axell, E.; Leus, G.; Larsson, E.G.; Poor, H.V. Spectrum Sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Process. Mag. 2012, 29, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Jiang, W.; Luo, W. Linear soft combination for cooperative spectrum sensing in cognitive radio networks. IEEE Commun. Lett. 2017, 21, 1573–1576. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.P. Sensing coverage-based cooperative spectrum detection in cognitive radio networks. IEEE Sens. J. 2019, 19, 5325–5332. [Google Scholar] [CrossRef]
- Jia, M.; Liu, X.; Gu, X.; Guo, Q. Joint cooperative spectrum sensing and channel selection optimization for satellite communication systems based on cognitive radio. Int. J. Satell. Commun. Netw. 2015, 35, 139–150. [Google Scholar] [CrossRef]
- Barrie, M.; Delaere, S.; Sukareviciene, G.; Gesquiere, J.; Moerman, I. Geolocation database beyond TV white spaces? Matching applications with database requirements. In Proceedings of the IEEE International Symposium on Dynamic Spectrum Access Networks, Bellevue, WA, USA, 16–19 October 2012; pp. 467–478. [Google Scholar]
- Fanan, A.; Riley, N.G.; Mehdawi, M.; Alfahad, O. Implementation of combined geolocation database and infrastructure sensing in TV bands using different spectrum devices. In Proceedings of the 25th Telecommunication Forum (TELFOR), Belgrade, Serbia, 21–22 November 2017; pp. 1–4. [Google Scholar]
- Awin, F.A.; Alginahi, Y.M.; Abdel-Raheem, E.; Tepe, K. Technical issues on cognitive radio-based internet of things systems: A Survey. IEEE Access 2019, 7, 97887–97908. [Google Scholar] [CrossRef]
- Mauwa, H.; Bagula, A.; Zennaro, M.; Pietrosemoli, E.; Lysko, A.; Brown, T.X. Systematic analysis of geolocation and spectrum sensing as access methods to TV white space. In Proceedings of the ITU Kaleidoscope: ICTs for a Sustainable World (ITU WT), Bangkok, Thailand, 14–16 November 2016; pp. 1–8. [Google Scholar]
- Gao, B.; Bhattarai, S.; Park, J.M.J. Incentivizing spectrum sensing in database driven dynamic spectrum sharing. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9. [Google Scholar]
- Thilina, K.M.; Choi, K.W.; Saquib, N.; Hossain, E. Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE J. Sel. Areas Commun. 2013, 31, 2209–2221. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Liu, X.; Qi, P. Improved cooperative spectrum sensing model based on machine learning for cognitive radio networks. IET Commun. 2018, 12, 2485–2492. [Google Scholar] [CrossRef]
- Tian, J.F.; Cheng, P.; Chen, Z.; Li, M.Q.; Hu, H.L.; Li, Y.H.; Vucetic, B. A machine learning-enabled spectrum sensing method for OFDM systems. IEEE Trans. Veh. Technol. 2019, 68, 11374–11378. [Google Scholar] [CrossRef]
- Bkassiny, M.; Li, Y.; Jayaweera, S.K. A survey on machine-learning techniques in cognitive radios. IEEE Commun. Surv. Tutorials 2013, 15, 1136–1159. [Google Scholar] [CrossRef]
- Chen, S.; Shen, B.; Wang, X.; Wu, H. SVM and Decision Stumps Based Hybrid AdaBoost Classification Algorithm for Cognitive Radios. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 17–20 February 2019; pp. 492–497. [Google Scholar]
- Qureshi, U.M.; Umair, Z.; Hancke, G.P. Problem of wireless fingerprint duplication in fingerprinting-based indoor localization. In Proceedings of the 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE), Cairns, QLD, Australia, 13–15 June 2018; pp. 1270–1275. [Google Scholar]
- Cordeiro, C.; Challapali, K.; Birru, D.; Shankar, S. IEEE 802.22: The first worldwide wireless standard based on cognitive radios. In Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD, USA, 8–11 November 2005; pp. 328–337. [Google Scholar]
- Wei, Z.; Feng, Z.; Zhang, Q.; Li, W. Three regions for space-time spectrum sensing and sccess in cognitive radio networks. IEEE Trans. Veh. Technol. 2015, 64, 2448–2462. [Google Scholar] [CrossRef]
- Sadowski, S.; Spachos, P. RSSI-based indoor localization with the internet of things. IEEE Access 2018, 6, 30149–30161. [Google Scholar] [CrossRef]
- Guvenc, I.; Chong, C.C. A survey on TOA-based wireless localization and NLOS mitigation techniques. IEEE Commun. Surv. Tutor. 2009, 11, 107–124. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, C.; Hepburn, D.M.; Judd, M.D.; Siew, W.H. Application of K-Means method to pattern recognition in on-line cable partial discharge monitoring. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN classification with different numbers of nearest neighbors. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1774–1785. [Google Scholar] [CrossRef]
- Shu, W.; Cai, K. A SVM multi-class image classification method based on DE and KNN in smart city management. IEEE Access 2019, 7, 132775–132785. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Tie, Y.; Lee, I.; Qi, L.; Guan, L. Graph-based safe support vector machine for multiple classes. IEEE Access 2018, 6, 28097–28107. [Google Scholar] [CrossRef]
Region Type | Region_Flag | PUT_Flag | Availability of for the SUEs |
---|---|---|---|
Black Region | 1 | 1 | strictly non-accessible |
Grey region | 0 | 0 | uncertain |
White region | freely accessible |
Data Type | WFP 1 | WFP 2 | ⋯ | WFP q | ⋯ | WFP Q |
---|---|---|---|---|---|---|
Geo-Location | ⋯ | ⋯ | ||||
⋯ | ⋯ | |||||
WFP Feature | ⋯ | ⋯ | ||||
(TOA) | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋯ |
⋯ | ⋯ | |||||
Spectrum | ⋯ | ⋯ | ||||
Label | ⋯ | ⋯ | ||||
Timer | ⋯ | ⋯ | ||||
Most Recent | ⋯ | ⋯ | ||||
Observations | ⋯ | ⋯ | ||||
Public Labels | PUT_State_Flag_h, ; PUT_Position_Flag |
Parameter | Value |
---|---|
CCRN Area | 6 km × 6 km |
Grid Area | 80 m × 80 m |
Number of BSs, K | 3 |
Number of Grids, Q | 5625 |
Number of PUTs, P | 2 |
Bandwidth of , W | 5 MHz |
Sensing Interval, | 100 μs |
Sensing Period, | 100 ms |
Maximum Time in Update_Timer_q, | |
Number of sensing segments, M | 10 |
Pathloss component, | 4 |
Shadowing component, | 2 dB |
Fading component, | 5 dB |
Length of data for T1-SVM training, L | 22,500 |
Length of data for T2-SVM training, | 5625 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Shen, B.; Wang, X.; Yoo, S.-J. Geo-Location Information Aided Spectrum Sensing in Cellular Cognitive Radio Networks. Sensors 2020, 20, 213. https://doi.org/10.3390/s20010213
Chen S, Shen B, Wang X, Yoo S-J. Geo-Location Information Aided Spectrum Sensing in Cellular Cognitive Radio Networks. Sensors. 2020; 20(1):213. https://doi.org/10.3390/s20010213
Chicago/Turabian StyleChen, Siji, Bin Shen, Xin Wang, and Sang-Jo Yoo. 2020. "Geo-Location Information Aided Spectrum Sensing in Cellular Cognitive Radio Networks" Sensors 20, no. 1: 213. https://doi.org/10.3390/s20010213
APA StyleChen, S., Shen, B., Wang, X., & Yoo, S.-J. (2020). Geo-Location Information Aided Spectrum Sensing in Cellular Cognitive Radio Networks. Sensors, 20(1), 213. https://doi.org/10.3390/s20010213