Optimal Design and Analysis on High Overload Buffer Structure of Passive Semi-Strapdown Inertial Navigation System
Abstract
:1. Introduction
2. Compositions and Working Principle of the Passive Semi-Strapdown Inertial Navigation System
2.1. Compositions
2.2. Working Principle
3. Optimization and Analysis of High Overload Buffer Structure
3.1. Design of In-Bore Buffer
3.1.1. Principle of In-Bore Buffer
3.1.2. The Selection of Materials
3.1.3. Mechanical Simulation
3.2. The Design of Out-Bore Isolation
Design Principle
4. Test Verification and Discussion
4.1. Impact Test
4.2. Accelerated, High-Speed Rotation Test
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duan, X.M.; Liu, J.; Li, J. Design and Test of platform with partial strapdown inertial navigation system for guided projectile. Missiles Space Veh. 2014, 3, 20–23. [Google Scholar]
- Jamshaid, A.; Fang, J.C. Realization of an autonomous integrated suite of strapdown astro-inertial navigation systems using unscented particle filtering. Comput. Math. Appl. 2009, 5, 169–183. [Google Scholar]
- Du, J.; Guo, Y.; Lin, Y.; Zheng, X.; Jin, Z. A real-time temperature compensation algorithm for a force-rebalanced MEMS capacitive accelerometer based on resonant frequency. In Proceedings of the 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Los Angeles, CA, USA, 9–12 April 2017. [Google Scholar]
- Hou, M.; Yan, K.; Wang, W. Status and development trend of long-range guided projectile technology. Aerodyn. Missile J. 2017, 10, 86–90. [Google Scholar]
- Mu, Y.; Cheng, Z.X.; Wang, J. Status and Development Trend of Guided Projectile Technology. Aerodyn. Missile J. 2008, 07, 33–37. [Google Scholar]
- Cao, F.; Yang, X.G.; Miao, D.; Zhang, Y.P. Study on Reference Image Selection Roles for Scene Matching Guidance. Appl. Res. Comput. 2005, 5, 137–139. [Google Scholar]
- Wang, W.; He, S. Development of MEMS inertial instrument technology. Missile Space Veh. 2009, 3, 23–28. [Google Scholar]
- Guo, D. Weapon-target assignment for multi-to-multi interception with grouping constraint. IEEE Access 2019, 7, 34838–34849. [Google Scholar] [CrossRef]
- Bao, Y.Q.; Chen, G.G.; Wu, K.; Wang, X.R. Research on Attitude Determination Using Magnetometers and MEMS Inertial Sensors. Acta Armamentarii 2008, 10, 1227–1231. [Google Scholar]
- Zhang, X.; Li, J.; Hou, L.-P.; Zhu, J.-D.; Qin, L. Analysis and Compensation of Installation Axial Angle Errors of Semi-strapdown IMS. Acta Armamentarii 2015, 36, 1222–1227. [Google Scholar]
- Chen, J.-H.; Lee, S.-C.; DeBra, D.B. Gyroscope Free Strapdown Inertial Measurement Unit by Six Linear Accelerometers. J. Guid. Control Dyn. 1994, 17, 286–290. [Google Scholar] [CrossRef]
- Dehghani, M.; Kharrati, H.; Seyedarabi, H.; Baradarannia, M. The Correcting Approach of Gyroscope-Free Inertial Navigation Based on the Applicable Topological Map. J. Comput. Inf. Sci. Eng. 2019, 19, 021001. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Che, X.; Zhang, X.; Hu, C.; Feng, K.; Xu, T. The Optimal Design of Modulation Angular Rate for MEMS-Based Rotary Semi-SINS. Micromachines 2019, 10, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, X.M.; Li, J.; Liu, J. Research on the Dynamic Model of a Partial Strapdown Platform and the Impact Analysis of Pitching Angle and the Stability of Platform. Acta Armamentarii 2014, 35, 1436–1442. [Google Scholar]
- Li, J.; Zhao, Y.; Liu, J.; Chen, W. Research on Semi-strapdown MEMS Inertial Measurement Device for Flight Attitude Measurement of High-speed Rotating Ammunition. Acta Armamentarii 2013, 34, 1398–1403. [Google Scholar]
- Li, J.; Jing, Z.Y.; Zhang, X.; Zhang, J.; Li, J.; Gao, S.; Zheng, T. Optimization Design Method of a New Stabilized Platform Based on Missile-borne Semi-Strap-down Inertial Navigation System. Sensors 2018, 18, 4412. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Jia, H.G.; Hao, X.Y.; Zhou, L. Optimal Design of Buffered Isolation Structure of High Overload Data Storage. Explos. Shock Waves 2012, 32, 557–560. [Google Scholar]
- Hu, C.J. Design of Micro Inertial Measurement System for Miniature Projectile-Based Equipments against High Overload. Master’s Thesis, North University of China, Taiyuan, China, 2015. [Google Scholar]
- Zhao, X.Z. Anti-High-Overload Design and Application for Electronic Recording System. Master’s Thesis, North University of China, Taiyuan, China, 2008. [Google Scholar]
- Wei, X.K.; Li, J.; Zheng, T.; Zhang, X.; Feng, K.Q.; Qian, H.N. Design of anti-overload structure for passive semi-strapdown stable platform. Explos. Shock Waves 2019, 39, 138–147. [Google Scholar]
- Wei, X.K.; Li, J.; Zhang, D.; Feng, K.; Zhang, J.; Li, J.; Lu, Z. Optimization of a New High Rotary Missile-Borne Stabilization Platform. Sensors 2019, 19, 4143. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.J.; Li, J.; Du, S.Y.; Zheng, T.; Wei, X.; Zhang, J. A New Measurement System for the Rolling Angle of the High-Rotating Projectile. Chin. J. Sens. Actuators 2018, 31, 640–644. [Google Scholar]
- Wei, W.; Wang, N.F. Numerical Simulation of Structural Integrity for Solid Propellants under Axial High Overloads. Chin. J. Explos. Propellants 2004, 1, 53–55. [Google Scholar]
- Originality Document. Available online: https://max.book118.com/html/2018/0828/5013044333001311.shtm (accessed on 1 January 2020).
- Li, J.; Ning, Q.L.; Zhu, J.S.; Liu, C. Effect of load-relieving material on projectile-based equipments against high overload. Ordnance Mater. Sci. Eng. 2013, 36, 7–10. [Google Scholar] [CrossRef]
- Gong, L.; Zhao, W.; Ren, F.; He, N.; Li, L.; Xu, Q.; Khan, A.M. Experimental study on surface integrity in cryogenic milling of 35CrMnSiA high-strength steel. Int. J. Adv. Manuf. Technol. 2019, 103, 605–615. [Google Scholar] [CrossRef]
- Nekouei, R.K.; Akhaghi, R.; Ravanbkhsh, A.; Tahmasebi, R.; Moghaddam, A.J.; Mahrouei, M. A study of the effect of two-stage tempering on the mechanical properties of steel 30CrMnSi using analysis of response surface in design of experiment. Metal Sci. Heat Treat. 2016, 57, 694–701. [Google Scholar] [CrossRef]
- Ge, Y.L.; Ding, Y.C. The Influence of Heat Treatment Process on the Micro-structure and Mechanical Properties of 40Cr. J. Chengdu Technol. Univ. 2017, 20, 20–23. [Google Scholar]
- Liu, X.L.; Liu, C.M.; Chang, Y.Z.; Liu, S.M. Cesearch Status and Development Progress of High-Damping and High-Strength Magnesium Alloys. Foundry 2008, 57, 1123–1127. [Google Scholar]
- Han, Z.P. Exterior Ballistics of Projectiles and Rockets; Beijing Institute of Technology Press: Beijing, China, 2014; pp. 143–146. [Google Scholar]
- Wang, Y.H.; Li, J.; Liu, W.; Zheng, T.; Du, S.Y. Analysis and Experimental Verification of Stability of the Roll Stabilization Platform on Missile. Sci. Technol. Eng. 2017, 17, 273–277. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, J.; Qin, L.; Liu, W.; Wei, X.; Gao, N.; Liu, Y. Optimal Design and Analysis on High Overload Buffer Structure of Passive Semi-Strapdown Inertial Navigation System. Sensors 2020, 20, 1131. https://doi.org/10.3390/s20041131
Li J, Li J, Qin L, Liu W, Wei X, Gao N, Liu Y. Optimal Design and Analysis on High Overload Buffer Structure of Passive Semi-Strapdown Inertial Navigation System. Sensors. 2020; 20(4):1131. https://doi.org/10.3390/s20041131
Chicago/Turabian StyleLi, Jinqiang, Jie Li, Li Qin, Wei Liu, Xiaokai Wei, Ning Gao, and Yang Liu. 2020. "Optimal Design and Analysis on High Overload Buffer Structure of Passive Semi-Strapdown Inertial Navigation System" Sensors 20, no. 4: 1131. https://doi.org/10.3390/s20041131
APA StyleLi, J., Li, J., Qin, L., Liu, W., Wei, X., Gao, N., & Liu, Y. (2020). Optimal Design and Analysis on High Overload Buffer Structure of Passive Semi-Strapdown Inertial Navigation System. Sensors, 20(4), 1131. https://doi.org/10.3390/s20041131