A Line Matching Method Based on Multiple Intensity Ordering with Uniformly Spaced Sampling
Abstract
:1. Introduction
2. Methodology
2.1. Line Segment Detection from Image Pyramid
2.2. Intensity-Based Local Feature Descriptor
2.2.1. Support Region with Local Coordinate System
2.2.2. Sub-Region Division Based on Intensity Order
2.2.3. Multiple Local Intensity Order Representation
2.2.4. The Construction of the Local Feature Descriptor
2.3. Descriptor Matching in Image Pyramid
2.4. Fundamental Matrix Estimation by Intersections
3. Experiments and Discussion
3.1. Parameters Evaluation
3.2. The Descriptor Dimension
3.3. The Scale Estimation
3.4. Experimental Results and Discussion
3.4.1. Natural Scene Image Pairs
3.4.2. The Illumination Dataset
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef] [Green Version]
- Remondino, F.; El-Hakim, S. Image-based 3D Modelling: A Review. Photogramm. Rec. 2006, 21, 269–291. [Google Scholar] [CrossRef]
- Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey. Ieee Trans. Pattern Anal. Mach. Intell. 2014, 36, 2270–2287. [Google Scholar] [CrossRef]
- Piasco, N.; Sidibé, D.; Demonceaux, C.; Gouet-Brunet, V. A survey on Visual-Based Localization: On the benefit of heterogeneous data. Pattern Recognit. 2018, 74, 90–109. [Google Scholar] [CrossRef] [Green Version]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Gool, L.V. SURF: Speeded up robust features. In Proceedings of the 9th European Conference on Computer Vision—Volume Part I, Graz, Austria, 7–13 May 2006; pp. 404–417. [Google Scholar]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary Robust invariant scalable keypoints. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2548–2555. [Google Scholar]
- Bellavia, F.; Tegolo, D.; Valenti, C. Keypoint descriptor matching with context-based orientation estimation. Image Vis. Comput. 2014, 32, 559–567. [Google Scholar] [CrossRef]
- Cuneyt Akinlar, C.T. EDLines: A real-time line segment detector with a false detection control. Pattern Recognit. Lett. 2011, 32, 1633–1642. [Google Scholar] [CrossRef]
- Gioi, R.G.V.; Jakubowicz, J.; Morel, J.; Randall, G. LSD: A Fast Line Segment Detector with a False Detection Control. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 722–732. [Google Scholar] [CrossRef]
- Bay, H.; Ferraris, V.; Van Gool, L. Wide-baseline stereo matching with line segments. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–25 June 2005; pp. 329–336. [Google Scholar]
- Wang, Z.; Wu, F.; Hu, Z. MSLD: A Robust Descriptor for Line Matching. Pattern Recognit. 2009, 42, 941–953. [Google Scholar] [CrossRef]
- Wang, L.; Neumann, U.; You, S. Wide-baseline image matching using Line Signatures. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 1311–1318. [Google Scholar]
- Bin Fan, F.; Hu, Z. Robust Line Matching through Line-point Invariants. Pattern Recognit. 2012, 45, 794–805. [Google Scholar] [CrossRef]
- Zhang, L.; Koch, R. An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent. 2013, 24, 794–805. [Google Scholar] [CrossRef]
- Zhang, L.; Koch, R. Line Matching Using Appearance Similarities and Geometric Constraints. In Joint DAGM (German Association for Pattern Recognition) and OAGM Symposium; Springer: Berlin/Heidelberg, Germany, 2012; pp. 236–245. [Google Scholar]
- Park, J.; Yoon, K.-J. Real-time line matching from stereo images using a nonparametric transform of spatial relations and texture information. Opt. Eng. 2015, 54, 023106. [Google Scholar] [CrossRef]
- López, J.; Santos, R.; Fdez-Vidal, X.R.; Pardo, X.M. Two-view line matching algorithm based on context and appearance in low-textured images. Pattern Recognit. 2015, 48, 2164–2184. [Google Scholar] [CrossRef]
- Jia, Q.; Gao, X.; Fan, X.; Luo, Z.; Li, H.; Chen, Z. Novel Coplanar Line-Points Invariants for Robust Line Matching Across Views. In Proceedings of the Computer Vision—ECCV 2016 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 599–611. [Google Scholar]
- Fan, X.; Luo, Z.; Zhang, J.; Zhou, X.; Jia, Q.; Luo, D. Characteristic Number: Theory and Its Application to Shape Analysis. Axioms 2014, 3, 202–221. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Fan, X.; Gao, X.; Yu, M.; Li, H.; Luo, Z. Line matching based on line-points invariant and local homography. Pattern Recognit. 2018, 81, 471–483. [Google Scholar] [CrossRef]
- Li, K.; Yao, J.; Xia, M.; Li, L. Joint point and line segment matching on wide-baseline stereo images. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–9. [Google Scholar]
- Li, K.; Yao, J.; Lu, X.; Li, L.; Zhang, Z. Hierarchical line matching based on Line-Junction-Line structure descriptor and local homography estimation. Neurocomputing 2016, 184, 207–220. [Google Scholar] [CrossRef]
- Li, K.; Yao, J. Line segment matching and reconstruction via exploiting coplanar cues. ISPRS J. Photogramm. Remote Sens. 2017, 125, 33–49. [Google Scholar] [CrossRef]
- Xing, J.; Wei, Z.; Zhang, G. A Robust Line Matching Method Based on Local Appearance Descriptor and Neighboring Geometric Attributes; SPIE: Bellingham, WA, USA, 2016; Volume 10157, p. 8. [Google Scholar]
- Liu, Y.; Mejias, L.; Li, Z. Fast Power Line Detection And Localization Using Steerable Filter For Active Uav Guidance. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B3, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Garratt, M.A.; Lambert, A.J. Monocular vision-based real-time target recognition and tracking for autonomously landing an UAV in a cluttered shipboard environment. Auton. Robot. 2017, 41, 881–901. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, J. Automatic Registration Method for Optical Remote Sensing Images with Large Background Variations Using Line Segments. Remote Sens. 2016, 8, 426. [Google Scholar] [CrossRef] [Green Version]
- Desolneux, A.; Moisan, L.; Morel, J.-M. From Gestalt Theory to Image Analysis: A Probabilistic Approach; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef] [Green Version]
- Zhenhua, W.; Fan, B.; Wu, F. Local Intensity Order Pattern for feature description. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 603–610. [Google Scholar]
- Andrew Alex, M. Multiple View Geometry in Computer Vision. Kybernetes 2001, 30, 1333–1341. [Google Scholar] [CrossRef]
- Mikolajczyk, K.; Tuytelaars, T.; Schmid, C.; Zisserman, A.; Matas, J.; Schaffalitzky, F.; Kadir, T.; Gool, L.V. A Comparison of Affine Region Detectors. Int. J. Comput. Vis. 2005, 65, 43–72. [Google Scholar] [CrossRef] [Green Version]
Symbols | Tested Values | Selected Values | Description |
---|---|---|---|
m | 2, 3, 4, 5, 6, 7, 8, 9, 10 | 6 | the number of sub-regions |
r | 1, 2,3 | 2 | the number of concentric circles |
R | 9, 12, 15, 18, 21, 24, 27, 30 | 12, 15 | the radius of the circles |
v | 1, 2, 3 | 3 | the number of sample point sets |
u | 2, 3, 4, 5, 6 | 3 | the number of sample points in each point set |
h | 15, 25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135 | 45 | the height of the line support region |
Img Pairs | The Number of Img Pairs | Method | Correct Matches | Total Matches | Precision (%) | Average Time (ms) |
---|---|---|---|---|---|---|
corridor | 1–2 | proposed | 763 | 775 | 98.5 | 8.0 |
MSLD | 376 | 395 | 95.2 | 2.3 | ||
LPI | 128 | 465 | 27.5 | 19.1 | ||
1–3 | proposed | 453 | 466 | 97.2 | 7.6 | |
MSLD | 202 | 219 | 92.2 | 2.4 | ||
LPI | 69 | 250 | 27.6 | 9.2 | ||
1–4 | proposed | 243 | 257 | 94.6 | 7.7 | |
MSLD | 96 | 119 | 80.7 | 2.6 | ||
LPI | 32 | 163 | 19.6 | 7.3 | ||
1–5 | proposed | 121 | 127 | 95.3 | 7.4 | |
MSLD | 29 | 54 | 53.7 | 2.9 | ||
LPI | 7 | 12 | 58.3 | 6.0 | ||
desktop | 1–2 | proposed | 299 | 307 | 97.4 | 8.2 |
MSLD | 179 | 186 | 96.2 | 3.8 | ||
LPI | 46 | 52 | 88.5 | 6.7 | ||
1–3 | proposed | 509 | 515 | 98.8 | 8.1 | |
MSLD | 302 | 310 | 97.4 | 2.4 | ||
LPI | 214 | 230 | 93.0 | 8.3 | ||
1–4 | proposed | 491 | 495 | 99.2 | 8.0 | |
MSLD | 281 | 287 | 97.9 | 2.4 | ||
LPI | 214 | 227 | 94.3 | 7.6 | ||
1–5 | proposed | 371 | 375 | 98.9 | 8.1 | |
MSLD | 239 | 244 | 98.0 | 2.2 | ||
LPI | 53 | 176 | 30.1 | 6.0 | ||
desktop_syn | 1–2 | proposed | 411 | 414 | 99.3 | 8.2 |
MSLD | 276 | 283 | 97.5 | 2.2 | ||
LPI | 175 | 208 | 84.1 | 6.9 | ||
1–3 | proposed | 361 | 365 | 98.9 | 8.1 | |
MSLD | 181 | 189 | 95.8 | 2.2 | ||
LPI | 21 | 126 | 16.7 | 5.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, J.; Wei, Z.; Zhang, G. A Line Matching Method Based on Multiple Intensity Ordering with Uniformly Spaced Sampling. Sensors 2020, 20, 1639. https://doi.org/10.3390/s20061639
Xing J, Wei Z, Zhang G. A Line Matching Method Based on Multiple Intensity Ordering with Uniformly Spaced Sampling. Sensors. 2020; 20(6):1639. https://doi.org/10.3390/s20061639
Chicago/Turabian StyleXing, Jing, Zhenzhong Wei, and Guangjun Zhang. 2020. "A Line Matching Method Based on Multiple Intensity Ordering with Uniformly Spaced Sampling" Sensors 20, no. 6: 1639. https://doi.org/10.3390/s20061639
APA StyleXing, J., Wei, Z., & Zhang, G. (2020). A Line Matching Method Based on Multiple Intensity Ordering with Uniformly Spaced Sampling. Sensors, 20(6), 1639. https://doi.org/10.3390/s20061639