Lane-Level Map-Matching Method for Vehicle Localization Using GPS and Camera on a High-Definition Map
Abstract
:1. Introduction
- The primary contribution of this paper is the achievement of lane-level position accuracy using data from GPS, a camera, and a map, which can be applied in autonomous driving applications. In particular, the position of the vehicle is finally on the HD map, the proposed method does not diverge in a complicated environment.
- Another contribution is the enhancement of localization performance via usage of low-cost sensors. We used GPS and camera sensors of a smartphone and the information of a HD map that was provided in advance. It was considerably inexpensive when compared to the LiDAR approaches.
2. Preliminaries
2.1. System Overview
2.2. Description of the Reference Map
3. Extraction of Driving Link Information
3.1. Inverse Perspective Mapping
3.2. Detection of Vehicle Lines
3.2.1. Adaptive Histogram Thresholding
3.2.2. Edge Detection
3.2.3. Detection of Vehicle Lines Using Hough Transform
3.3. Driving Link Information
3.3.1. Link Information by Constraint
3.3.2. Detection of Yellow Lane Marking
4. Map-Based Localization
4.1. Building a Local Map
4.2. Iterative Closest Point-Based Rigid Map-Matching Method
4.3. Vehicle Position on the Map
5. Experimental Setup and Results
5.1. Introduction to the Experimental Setup
5.2. Experimental Results
5.2.1. Evaluation of Driving Link Extraction
5.2.2. Evaluation of Localization
5.2.3. Comparison with LiDAR Approach
6. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zogg, J.M. GPS: Essentials of Satellite Navigation: Compendium: Theorie and Principles of Satellite Navigation, Overview of GPS/GNSS Systems and Applications. Available online: http://zogg-jm.ch/Dateien/GPS_Compendium(GPS-X-02007).pdf (accessed on 10 April 2020).
- Velodyne LiDAR, Inc. Multibeam 3D Laser Scanners Products, Official Website. 2020. Available online: https://velodynelidar.com (accessed on 3 February 2020).
- Velodyne LiDAR Website. 2020. Available online: https://velodynelidar.com/products.html (accessed on 3 February 2020).
- Velodyne LiDAR, Alpha Prime. 2020. Available online: https://velodynelidar.com/products/alpha-prime/ (accessed on 3 February 2020).
- Levinson, J.; Thrun, S. Robust vehicle localization in urban environments using probabilistic maps. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010), Anchorage, AK, USA, 3–8 May 2010; pp. 4372–4378. [Google Scholar]
- Hata, A.Y.; Wolf, D.F. Feature detection for vehicle localization in urban environments using a multilayer LIDAR. IEEE Trans. Intell. Transp. Syst. 2015, 17, 420–429. [Google Scholar] [CrossRef]
- Dietmayer, K.; Kaempchen, N.; Fuerstenberg, K.; Kibbel, J.; Justus, W.; Schulz, R. Roadway detection and lane detection using multilayer laserscanner. In Advanced Microsystems for Automotive Applications 2005; Springer: New York, NY, USA, 2005; pp. 197–213. [Google Scholar]
- Hata, A.Y.; Wolf, D.F. Road marking detection using LIDAR reflective intensity data and its application to vehicle localization. In Proceedings of the 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 584–589. [Google Scholar]
- Castorena, J.; Agarwal, S. Ground-edge-based LIDAR localization without a reflectivity calibration for autonomous driving. IEEE Robot. Autom. Lett. 2018, 3, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Singh, S. LOAM: Lidar Odometry and Mapping in Real-time. In Proceedings of the Robotics: Science and Systems, Berkeley, CA, USA, 12–16 July 2014. [Google Scholar]
- Shan, T.; Englot, B. LeGO-LOAM: Lightweight and ground-optimized lidar odometry and mapping on variable terrain. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 4758–4765. [Google Scholar]
- Kim, H.; Liu, B.; Goh, C.Y.; Lee, S.; Myung, H. Robust vehicle localization using entropy-weighted particle filter-based data fusion of vertical and road intensity information for a large scale urban area. IEEE Robot. Autom. Lett. 2017, 2, 1518–1524. [Google Scholar] [CrossRef]
- Valiente, D.; Gil, A.; Payá, L.; Sebastián, J.M.; Reinoso, O. Robust Visual Localization with Dynamic Uncertainty Management in Omnidirectional SLAM. Appl. Sci. 2017, 7, 1294. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Chen, Z.; Li, Y.; Su, Z. Rapid Relocation Method for Mobile Robot Based on Improved ORB-SLAM2 Algorithm. Remote Sems. 2019, 11, 149. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Rui, T.; Yang, C.; Shi, J. LAP-SLAM: A Line-Assisted Point-Based Monocular VSLAM. Electronics 2019, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.S.; Fu, L.C. Driver assistance system for lane detection and vehicle recognition with night vision. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Edmonton, AB, Canada, 2–6 August 2005; pp. 3530–3535. [Google Scholar]
- Miao, X.; Li, S.; Shen, H. On-board lane detection system for intelligent vehicle based on monocular vision. Int. J. Smart Sens. Intell. Syst. 2012, 5, 957–972. [Google Scholar] [CrossRef] [Green Version]
- Gopalan, R.; Hong, T.; Shneier, M.; Chellappa, R. A learning approach towards detection and tracking of lane markings. IEEE Trans. Intell. Syst. 2012, 13, 1088–1098. [Google Scholar] [CrossRef]
- Borkar, A.; Hayes, M.; Smith, M.T. A novel lane detection system with efficient ground truth generation. IEEE Trans. Intell. Transp. Syst. 2012, 13, 365–374. [Google Scholar] [CrossRef]
- Cui, G.; Wang, J.; Li, J. Robust multilane detection and tracking in urban scenarios based on LIDAR and mono-vision. IET Image Process. 2014, 8, 269–279. [Google Scholar] [CrossRef]
- Hillel, A.B.; Lerner, R.; Levi, D.; Raz, G. Recent progress in road and lane detection: A survey. Mach. Vis. Appl. 2014, 25, 727–745. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, D. Lane detection techniques: A review. Internat. J. Comput. Appl. 2015, 3, 596–602. [Google Scholar]
- McCall, J.; Trivedi, M. Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation. IEEE Trans. Intell. Transp. Syst. 2006, 7, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Yenikaya, S.; Yenikaya, G.; Düven, E. Keeping the vehicle on the road: A survey on on-road lane detection systems. ACM Comput. Surv. (CSUR) 2013, 46, 2. [Google Scholar] [CrossRef]
- Parra, I.; Sotelo, M.A.; Llorca, D.F.; Oca, M. Robust visual odometry for vehicle localization in urban environments. Robotica 2010, 28, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Lategahn, H.; Stiller, C. City GPS using stereo vision. In Proceedings of the 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Istanbul, Turkey, 24–27 July 2012; pp. 1–6. [Google Scholar]
- Pink, O. Visual map matching and localization using a global feature map. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’08), Anchorage, AK, USA, 23–28 June 2008; pp. 1–7. [Google Scholar]
- Kamijo, S.; Gu, Y.; Hsu, L.-T. Autonomous vehicle technologies: Localization and mapping. IEICE ESS Fundam. Rev. 2015, 9, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Suhr, J.K.; Jang, J.; Min, D.; Jung, H.G. Sensor fusion-based low0cost vehicle localization system for complex urban environments. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1078–1086. [Google Scholar] [CrossRef]
- White, C.E.; Bernstein, D.; Kornhauser, A.L. Some map matching algorithms for personal navigation assistants. Transp. Res. Part C. Emerg. Technol. 2000, 8, 91–108. [Google Scholar] [CrossRef]
- Bernstein, D.; Kornhauser, A. An Introduction to Map Matching for Personal Navigation Assistants; The National Academies of Sciences, Engineering, and Medicine: Washington, WA, USA, 1998. [Google Scholar]
- Lou, Y.; Zhang, C.; Zheng, Y.; Xie, X.; Wang, W.; Huang, Y. Map-matching for low-sampling-rate GPS trajectories. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information System, Seattle, WA, USA, 4–6 November 2009; pp. 352–361. [Google Scholar]
- Quddus, M.A.; Noland, R.B.; Ochieng, W.Y. A high accuracy fuzzy logic-based map-matching algorithm for road transport. J. Intell. Transp. Syst. 2006, 10, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, W.Y.; Quddus, M.A.; Noland, R.B. Map-matching in complex urban road networks. Braz. J. Cartogr. 2003, 55, 1–14. [Google Scholar]
- Hashemi, M.; Karimi, H.A. A critical review of real-time map-matching algorithms: Current issues and future directions. Comput. Environ. Urban Syst. 2014, 48, 153–165. [Google Scholar] [CrossRef]
- Kang, J.M.; Kim, H.S.; Park, J.B.; Choi, Y.H. An enhanced map-matching algorithm for real-time position accuracy improvement with a low-cost GPS receiver. Sensors 2018, 18, 3836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattern, N.; Schubert, R.; Wanielik, G. High-accurate vehicle localization using digital maps and coherency images. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium (IV), La Jolla, CA, USA, 21–24 June 2010; pp. 462–469. [Google Scholar]
- Jo, K.; Jo, Y.; Suhr, J.K.; Jung, H.G.; Sunwoo, M. Precise Localization of an Autonomous Car Based on Probabilistic Noise Models of Road Surface Marker Features Using Multiple Cameras. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3377–3392. [Google Scholar] [CrossRef]
- Badino, H.; Huber, D.; Kanade, T. Visual topometric localization. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 794–799. [Google Scholar]
- DeSouza, G.N.; Kak, A.C. Vision for mobile robot navigation: A survey. IEEE trans. Pattern Anal. Mach. Intell. 2002, 24, 237–267. [Google Scholar] [CrossRef] [Green Version]
- Bertozzi, M.; Broggi, A.; Fascioli, A. VisLab and the evolution of vision-based UGVs. IEEE Comput. 2006, 39, 31–38. [Google Scholar] [CrossRef]
- National Geographic Information Institute Website. Available online: http://map.ngii.go.kr/ms/pblictn/preciseRoadMap.do (accessed on 3 February 2020).
- Korea Legislation Research Institute Website. Available online: https://elaw.klri.re.kr/kor_service/lawView.do?hseq=48512&lang=ENG (accessed on 3 February 2020).
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Korea Ministry of Government Legislation Website. Available online: http://www.law.go.kr/LSW/lsInfoP.do?lsiSeq=138166#0000 (accessed on 3 February 2020).
- Son, J.; Yoo, H.; Kim, S.; Sohn, K. Real-Time Illumination Invariant Lane Detection for Lane Departure Warning System. Expert Syst. Appl. 2015, 42, 1816–1824. [Google Scholar] [CrossRef]
- Besl, P.J.; Mckay, N.D. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures; International Society for Optics and Photonics: Bellingham, WA, USA, 1992; Volume 1611, pp. 586–607. [Google Scholar]
- Specht, A.R.; Devy, M.; Sappa, A. Robustness to Initial Conditions in Registration of Range Images Using the ICP Algorithm. Available online: http://www.cvc.uab.es/~asappa/publications/C__ISRA.pdf (accessed on 3 February 2020).
- NovAtel Inc. PwrPak7D-E2. Available online: https://www.novatel.com/support/info/documents/2173 (accessed on 3 February 2020).
- NovAtel Inc. VEXXIS GNSS-804. Available online: https://www.novatel.com/support/info/documents/1831 (accessed on 3 February 2020).
Course | Length (km) | Number of GPS Points | Number of Image Frames |
---|---|---|---|
Course 1 | 10.1 | 415 | 6225 |
Course 2 | 2.3 | 630 | 9450 |
Course | Timestamp | Correct Link | Correct Line Rate (%) |
---|---|---|---|
Course 1 | 415 | 410 | 98.795 |
Course 2 | 630 | 597 | 94.761 |
Course | Mean (GPS) (m) | St.Dev. (GPS) (m) | Mean (Prop.) (m) | St.Dev. (Prop.) (m) |
---|---|---|---|---|
Course 1 | 2.340 | 1.682 | 0.475 | 0.475 |
Course 2 | 4.231 | 1.724 | 0.875 | 0.632 |
Method | Mean (m) | St.Dev. (m) |
---|---|---|
LeGO-LOAM | 0.781 | 0.613 |
Prop. | 0.892 | 0.781 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.M.; Yoon, T.S.; Kim, E.; Park, J.B. Lane-Level Map-Matching Method for Vehicle Localization Using GPS and Camera on a High-Definition Map. Sensors 2020, 20, 2166. https://doi.org/10.3390/s20082166
Kang JM, Yoon TS, Kim E, Park JB. Lane-Level Map-Matching Method for Vehicle Localization Using GPS and Camera on a High-Definition Map. Sensors. 2020; 20(8):2166. https://doi.org/10.3390/s20082166
Chicago/Turabian StyleKang, Jeong Min, Tae Sung Yoon, Euntai Kim, and Jin Bae Park. 2020. "Lane-Level Map-Matching Method for Vehicle Localization Using GPS and Camera on a High-Definition Map" Sensors 20, no. 8: 2166. https://doi.org/10.3390/s20082166