Virtual Network Embedding for Multi-Domain Heterogeneous Converged Optical Networks: Issues and Challenges
Abstract
:1. Introduction
2. Virtual Network Embedding in Multi-Domain Heterogeneous Converged Optical Networks
2.1. Key Enabling Technologies
2.2. Wireless Network
2.3. Fiber-Wireless Access Network
2.4. Optical Network
3. Virtual Network Embedding Problem
3.1. Substrate Network
3.2. Virtual Network
3.3. Virtual Network Embedding
- Virtual Node Embedding (VNoE): .Virtual nodes need to be embedded to different substrate nodes that satisfy the node resource and location constraints, which are described by Equations (1)–(4), where {0,1}. If virtual node v of VN is embedded into substrate node n, . Equation (1) guarantees that all virtual nodes that are accommodated by the substrate node n cannot exceed the total substrate computing resource. Each virtual node v can only play host once to a unique substrate node shown in Equation (2). Each substrate node n can only host one virtual node of the same VN request described by Equation (3). The distance constraint for each virtual node is described by Equation (4), where dis(·) refers the distance between the locations of substrate node n and virtual node v.
- Virtual Link Embedding (VLiE): .Virtual links embedded to loop-free paths on the substrate network that satisfy the link bandwidth resource requirements and the total virtual link requirements cannot exceed the bandwidth resource of substrate link , as shown in Equation (5). Binary variable equals 1, if substrate link is embedded by virtual link . Flow conservation constraint is shown in Equation (6). According to features of substrate links, additional link constraints should be considered, i.e., optical wavelength, spectrum continuity in EON [50,51,52], and wireless channel, expected anypath transmission time of anypath [24].
3.4. Main Objectives and Metrics
3.4.1. Profit
3.4.2. Acceptance Ratio
3.4.3. Resource Utilization
3.4.4. Latency
3.4.5. Energy Efficiency
3.4.6. Survivability
- Number of backups: The metric counts the number of backup resources that is reserved for a VN. Additional substrate resources have to be reserved to serve the VN request when failures happen. Path Redundancy measures the ratio between the number of backup paths to the number of direct paths. Some redundancy algorithms set up backup paths that can be used in case some parts of the network break down [86]. Therefore, the metric refers to the amount of additional resources that are used to backup the embedded network.
- Migration frequency: For node failure, migration frequency shows the performance required to achieve higher acceptance ratio and lower embedding cost of node migration [77]. The affected task node will be migrated to one backup host after node failure to reduce the cost of node migration and re-embedding the path. Link failure or path length constraint also can trigger migrations. Therefore, migration frequency should be considered as a metric to show the migration performance.
3.4.7. Traffic Prediction
4. VNE Algorithms Taxonomy
4.1. Two-Stage VNE Algorithms
4.1.1. Virtual Node Embedding
4.1.2. Virtual Link Embedding
4.2. Coordinated VNE Algorithms
4.3. Machine Learning Based VNE Algorithms
5. Issues and Challenges
5.1. 5G Architecture Network Slicing
5.2. Field Trial Deployment
5.3. Machine Learning Based Management Algorithm
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J.J.; Lorca, J.; Folgueira, J. Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges. IEEE Commun. Mag. 2017, 55, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Foukas, X.; Patounas, G.; Elmokashfi, A.; Marina, M.K. Network Slicing in 5G: Survey and Challenges. IEEE Commun. Mag. 2017, 55, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S. An Overview of Network Slicing for 5G. IEEE Wirel. Commun. 2019, 26, 111–117. [Google Scholar] [CrossRef]
- Addad, R.; Bagaa, M.; Taleb, T.; Cadette Dutra, D.L.; Flinck, H. Optimization Model for Cross-Domain Network Slices in 5G Networks. IEEE Trans. Mob. Comput. 2019, 19, 1156–1169. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, I.; Taleb, T.; Samdanis, K.; Ksentini, A.; Flinck, H. Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions. IEEE Commun. Surv. Tutorials 2018, 20, 2429–2453. [Google Scholar] [CrossRef]
- Bizanis, N.; Kuipers, F.A. SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access 2016, 4, 5591–5606. [Google Scholar] [CrossRef]
- BinSahaq, A.; Sheltami, T.; Salah, K. A Survey on Autonomic Provisioning and Management of QoS in SDN Networks. IEEE Access 2019, 7, 73384–73435. [Google Scholar] [CrossRef]
- Wang, A.; Iyer, M.; Dutta, R.; Rouskas, G.N.; Baldine, I. Network Virtualization: Technologies, Perspectives, and Frontiers. J. Lightwave Technol. 2013, 31, 523–537. [Google Scholar] [CrossRef]
- Chowdhury, N.M.M.K.; Boutaba, R. Network Virtualization: State of the Art and Research Challenges. IEEE Commun. Mag. 2009, 47, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, N.M.M.K.; Boutaba, R. A Survey of Network Virtualization. Comput. Netw. 2010, 54, 862–876. [Google Scholar] [CrossRef]
- Wang, Y.; McNulty, Z.; Nguyen, H. Network Virtualization in Spectrum Sliced Elastic Optical Path Networks. J. Lightwave Technol. 2017, 35, 1962–1970. [Google Scholar] [CrossRef]
- Yu, M.; Yi, Y.; Rexford, J.; Chiang, M. Rethinking Virtual Network Embedding: Substrate Support for Path Splitting and Migration. ACM SIGCOMM Comput. Commun. Rev. 2008, 38, 19–29. [Google Scholar] [CrossRef]
- Cheng, X.; Su, S.; Zhang, Z.; Shuang, K.; Yang, F.; Luo, Y.; Wang, J. Virtual Network Embedding through Topology Awareness and Optimization. Comput. Netw. 2012, 56, 1797–1813. [Google Scholar] [CrossRef]
- Shahriar, N.; Taeb, S.; Chowdhury, S.R.; Tornatore, M.; Boutaba, R.; Mitra, J.; Hemmati, M. Achieving a Fully-Flexible Virtual Network Embedding in Elastic Optical Networks. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019; pp. 1756–1764. [Google Scholar]
- Gong, L.; Wen, Y.; Zhu, Z.; Lee, T. Toward Profit-seeking Virtual Network Embedding Algorithm via Global Resource Capacity. In Proceedings of the IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 1–9. [Google Scholar]
- Davalos, E.J.; Baran, B. A Survey on Algorithmic Aspects of Virtual Optical Network Embedding for Cloud Networks. IEEE Access 2018, 6, 20896–20906. [Google Scholar] [CrossRef]
- Bari, M.F.; Boutaba, R.; Esteves, R.; Granville, L.Z.; Podlesny, M.; Rabbani, M.G.; Zhang, Q.; Zhani, M.F. Data Center Network Virtualization: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 909–928. [Google Scholar] [CrossRef]
- Singh, S.; Jeong, Y.S.; Park, J.H. A Survey on Cloud Computing Security: Issues, Threats, and Solutions. J. Netw. Comput. Appl. 2016, 75, 200–222. [Google Scholar] [CrossRef]
- Taleb, T.; Afolabi, I.; Bagaa, M. Orchestrating 5G Network Slices to Support Industrial Internet and to Shape Next-Generation Smart Factories. IEEE Netw. 2019, 33, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yin, S.; Guo, B.; Huang, H.; Li, W.; Zhang, M.; Huang, S. Experimental Demonstration of Software-Defined Optical Network for Heterogeneous Packet and Optical Networks. Photonic Netw. Commun. 2016, 32, 329–335. [Google Scholar] [CrossRef]
- Zhou, Y.; Ramamurthy, B.; Guo, B.; Huang, S. Supporting Dynamic Bandwidth Adjustment Based on Virtual Transport Link in Software-Defined IP Over Optical Networks. J. Opt. Commun. Netw. 2018, 10, 125–137. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Zhao, Y.; Li, H.; Huang, S.; Ji, Y.; Han, J.; Lin, Y.; Lee, Y. Cross Stratum Resilience for OpenFlow-enabled Data Center Interconnection with Flexi-Grid Optical Networks. Opt. Switch. Netw. 2014, 11, 72–82. [Google Scholar] [CrossRef]
- Han, Y.; Hyun, J.; Hong, J.W.K. Graph Abstraction based Virtual Network Management Framework for SDN. In Proceedings of the 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, USA, 10–14 April 2016; pp. 884–885. [Google Scholar]
- Li, M.; Chen, C.; Hua, C.; Guan, X. Intelligent Latency-Aware Virtual Network Embedding for Industrial Wireless Networks. IEEE IoT J. 2019, 6, 1–6. [Google Scholar] [CrossRef]
- Medhat, A.M.; Taleb, T.; Elmangoush, A.; Carella, G.A.; Covaci, S.; Magedanz, T. Service Function Chaining in Next Generation Networks: State of the Art and Research Challenges. IEEE Commun. Mag. 2017, 55, 216–223. [Google Scholar] [CrossRef]
- Hammad, A.; Aguado, A.; Peng, S.; Vilalta, R.; Mayoral, A.; Casellas, R.; Martínez, R.; Muñoz, R.; Nejabati, R.; Simeonidou, D. On-demand Virtual Infrastructure Composition over Multi- domain and Multi-technology Networks. In Proceedings of the IEEE Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 20–24 March 2016; pp. 4–6. [Google Scholar]
- Martínez, R.; Mayoral, A.; Vilalta, R.; Casellas, R.; Muñoz, R.; Pachnicke, S.; Szyrkowiec, T.; Autenrieth, A. Integrated SDN/NFV Orchestration for the Dynamic Deployment of Mobile Virtual Backhaul Networks Over a Multilayer (Packet/Optical) Aggregation Infrastructure. J. Opt. Commun. Netw. 2017, 9, A135–A142. [Google Scholar] [CrossRef]
- Wang, X.; Cavdar, C.; Wang, L.; Tornatore, M.; Zhao, Y.; Chung, H.; Lee, H.H.; Park, S.; Mukherjee, B. Joint Allocation of Radio and Optical Resources in Virtualized Cloud RAN with CoMP. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–5. [Google Scholar]
- Hu, Y.C.; Patel, M.; Sabella, D.; Sprecher, N.; Young, V. Mobile Edge Computing—A key technology towards 5G. ETSI White Pap. 2015, 11, 1–16. [Google Scholar]
- Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE IoT J. 2018, 5, 450–465. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Belqasmi, F.; Glitho, R.; Crespi, N.; Morrow, M.; Polakos, P. Wireless Sensor Network Virtualization: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 553–576. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Hua, C.; Chen, C.; Guan, X. Application-driven Virtual Network Embedding for Industrial Wireless Sensor Networks. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6. [Google Scholar]
- Yun, D.; Ok, J.; Shin, B.; Park, S.; Yi, Y. Embedding of Virtual Network Requests over Static Wireless Multihop Networks. Comput. Netw. 2013, 57, 1139–1152. [Google Scholar] [CrossRef] [Green Version]
- Lv, P.; Wang, X.; Xu, M. Virtual Access Network Embedding in Wireless Mesh Networks. Ad Hoc Netw. 2012, 10, 1362–1378. [Google Scholar] [CrossRef]
- Guan, Y.; Zong, Y.; Liu, Y.; Guo, L.; Ning, Z.; Rodrigues, J.J.P.C. Virtual Network Embedding Supporting User Mobility in 5G Metro/Access Networks. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7. [Google Scholar]
- Liu, Y.; Han, P.; Hou, J.; Zheng, J. Resource-Efficiently Survivable IoT Services Provisioning via Virtual Network Embedding in Fiber-Wireless Access Network. IEEE Access 2019, 7, 65007–65018. [Google Scholar] [CrossRef]
- Han, P.; Liu, Y.; Guo, L. QoS Satisfaction Aware and Network Reconfiguration Enabled Resource Allocation for Virtual Network Embedding in Fiber-Wireless Access Network. Comput. Netw. 2018, 143, 30–48. [Google Scholar] [CrossRef]
- Wang, W.; Guo, W.; Hu, W. Network Service Slicing Supporting Ubiquitous Access in Passive Optical Networks. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–3. [Google Scholar]
- Han, P.; Guo, L.; Liu, Y. Virtual Network Embedding in SDN/NFV based Fiber-Wireless Access Network. In Proceedings of the International Conference on Software Networking, Jeju, South Korea, 23–26 May 2016; pp. 1–5. [Google Scholar]
- Mosahebfard, M.; Vardakas, J.; Ramantas, K.; Verikoukis, C. SDN/NFV-based Network Resource Management for Converged Optical-wireless Network Architectures. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–4. [Google Scholar]
- Wang, Q.; Shou, G.; Liu, J.; Liu, Y.; Hu, Y.; Guo, Z. Resource Allocation for Edge Computing over Fibre-wireless Access Networks. IET Commun. 2019, 13, 2848–2856. [Google Scholar] [CrossRef]
- Rahman, S.; Gupta, A.; Tomatore, M.; Mukherjee, B. Dynamic Workload Migration over Optical Backbone Network to Minimize Data Center Electricity Cost. IEEE Trans. Green Commun. Netw. 2017, 2, 570–579. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, Y.; Song, M.; Li, H.; Gu, R.; Zhao, Y.; Zhang, J. Dynamic Virtual Network Embedding over Multilayer Optical Networks. J. Opt. Commun. Netw. 2015, 7, 918–927. [Google Scholar] [CrossRef]
- Rodriguez, E.; Alkmim, G.P.; Da Fonseca, N.L.; Batista, D.M. Energy-Aware Mapping and Live Migration of Virtual Networks. IEEE Syst. J. 2017, 11, 637–648. [Google Scholar] [CrossRef]
- Taeb, S.; Shahriar, N.; Chowdhury, S.R.; Tornatore, M.; Boutaba, R. Virtual Network Embedding with Path-based Latency Guarantees in Elastic Optical Networks. In Proceedings of the 2019 IEEE 27th International Conference on Network Protocols (ICNP), Chicago, IL, USA, 8–10 October 2019. [Google Scholar]
- Huang, S.; Zhou, Y.; Yin, S.; Kong, Q.; Zhang, M.; Zhao, Y.; Zhang, J.; Gu, W. Fragmentation Assessment based On-line Routing and Spectrum Allocation for Intra-data-center Networks with Centralized Control. Opt. Switch. Netw. 2014, 14, 274–281. [Google Scholar] [CrossRef]
- Klonidis, D.; Cugini, F.; Gerstel, O.; Jinno, M.; Lopez, V.; Palkopoulou, E.; Sekiya, M.; Siracusa, D.; Thouénon, G.; Betoule, C. Spectrally and Spatially Flexible Optical Network Planning and Operations. IEEE Commun. Mag. 2015, 53, 69–78. [Google Scholar] [CrossRef]
- Xuan, H.; Wang, Y.; Xu, Z.; Hao, S.; Wang, X. Virtual Optical Network Mapping and Core Allocation in Elastic Optical Networks using Multi-Core Fibers. Opt. Commun. 2017, 402, 26–35. [Google Scholar] [CrossRef]
- Huang, H.; Huang, S.; Yin, S.; Zhang, M.; Zhang, J.; Gu, W. Virtual Network Provisioning Over Space Division Multiplexed Optical Networks Using Few-Mode Fibers. J. Opt. Commun. Netw. 2016, 8, 726–733. [Google Scholar] [CrossRef]
- Ou, Y.; Hammad, A.; Peng, S.; Nejabati, R.; Simeonidou, D. Online and Offline Virtualization of Optical Transceiver. J. Opt. Commun. Netw. 2015, 7, 748–760. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Tang, Y.; Gao, T.; Zhang, Y.; Huang, S. On-demand Routing, Modulation Level and Spectrum Allocation (OD-RMSA) for Multicast Service Aggregation in Elastic Optical Networks. Opt. Express 2018, 26, 24506. [Google Scholar] [CrossRef]
- Gao, T.; Li, X.; Guo, B.; Yin, S.; Li, W.; Huang, S. Spectrum-efficient Multipath Provisioning with Content Connectivity for the Survivability of Elastic Optical Datacenter Networks. Opt. Fiber Technol. 2017, 36, 353–365. [Google Scholar] [CrossRef]
- Guo, B.; Shang, Y.; Zhang, Y.; Li, W.; Yin, S.; Zhang, Y.; Huang, S. Timeslot Switching-Based Optical Bypass in Data Center for Intrarack Elephant Flow with an Ultrafast DPDK-Enabled Timeslot Allocator. J. Lightwave Technol. 2019, 37, 2253–2260. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Tang, Y.; Guo, J.; Huang, S. Distributed Sub-Tree-Based Optical Multicasting Scheme in Elastic Optical Data Center Networks. IEEE Access 2018, 6, 6464–6477. [Google Scholar] [CrossRef]
- Li, X.; Yin, S.; Wang, X.; Zhou, Y.; Zhao, Y.; Huang, S.; Zhang, J. Content Placement With Maximum Number of End-to-Content Paths in k-Node (Edge) Content Connected Optical Datacenter Networks. J. Opt. Commun. Netw. 2017, 9, 53–66. [Google Scholar] [CrossRef]
- Fajjari, I.; Aitsaadi, N.; Pióro, M.; Pujolle, G. A New Virtual Network Static Embedding Strategy within the Cloud’s Private Backbone Network. Comput. Netw. 2014, 62, 69–88. [Google Scholar] [CrossRef]
- Lin, R.; Luo, S.; Zhou, J.; Wang, S.; Cai, A.; Zhong, W.; Zukerman, M. Virtual Network Embedding with Adaptive Modulation in Flexi-Grid Networks. J. Lightwave Technol. 2018, 36, 3551–3563. [Google Scholar] [CrossRef]
- Huang, H.; Guo, B.; Li, X.; Yin, S.; Zhou, Y.; Huang, S. Crosstalk-aware Virtual Network Embedding over Inter-datacenter Optical Networks with Few-mode Fibers. Opt. Fiber Technol. 2017, 39, 70–77. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, S.; Sun, Q.; Li, G.; Chen, B.; Gu, J. Fragmentation-aware VONE in elastic optical networks. J. Opt. Commun. Netw. 2018, 10, 809–822. [Google Scholar] [CrossRef]
- Montero, R.; Agraz, F.; Pages, A.; Spadaro, S. End-to-End 5G Service Deployment and Orchestration in Optical Networks with QoE Guarantees. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018. [Google Scholar]
- Cao, H.; Yang, L.; Zhu, H. Novel Node-Ranking Approach and Multiple Topology Attributes-Based Embedding Algorithm for Single-Domain Virtual Network Embedding. IEEE IoT J. 2018, 5, 108–120. [Google Scholar] [CrossRef]
- Chochlidakis, G.; Friderikos, V. Mobility Aware Virtual Network Embedding. IEEE Trans. Mob. Comput. 2017, 16, 1343–1356. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Qian, Z.; Wu, J.; Lu, S. An Opportunistic Resource Sharing and Topology-aware Mapping Framework for Virtual Networks. In Proceedings of the 2012 IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2408–2416. [Google Scholar]
- Chen, T.; Liu, J.; Tang, Q.; Huang, T.; Huo, R. Virtual Network Embedding Algorithm for Location-Based Identifier Allocation. IEEE Access 2019, 7, 31159–31169. [Google Scholar] [CrossRef]
- Cheng, X.; Su, S.; Zhang, Z.; Wang, H.; Yang, F.; Luo, Y.; Wang, J. Virtual Network Embedding through Topology-aware Node Ranking. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 38–47. [Google Scholar] [CrossRef]
- Zhu, M.; Sun, Q.; Zhang, S.; Gao, P.; Chen, B.; Gu, J. Energy-Aware Virtual Optical Network Embedding in Sliceable- Transponder- Enabled Elastic Optical Networks. IEEE Access 2019, 7, 41897–41912. [Google Scholar] [CrossRef]
- Ning, Z.; Huang, J.; Wang, X.; Rodrigues, J.J.P.C.; Guo, L. Mobile Edge Computing-Enabled Internet of Vehicles: Toward Energy-Efficient Scheduling. IEEE Netw. 2019, 33, 1–8. [Google Scholar] [CrossRef]
- Chochlidakis, G.; Friderikos, V. Low Latency Virtual Network Embedding for Mobile Networks. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Zong, Y.; Ou, Y.; Hammad, A.; Kondepu, K.; Nejabati, R.; Simeonidou, D.; Liu, Y.; Guo, L. Location-Aware Energy Efficient Virtual Network Embedding in Software-Defined Optical Data Center Networks. J. Opt. Commun. Netw. 2018, 10, 58–70. [Google Scholar] [CrossRef]
- Hejja, K.; Hesselbach, X. Online Power Aware Coordinated Virtual Network Embedding with 5G Delay Constraint. J. Netw. Comput. Appl. 2018, 124, 121–136. [Google Scholar] [CrossRef]
- Song, C.; Zhang, M.; Zhan, Y.; Wang, D.; Guan, L.; Liu, W.; Zhang, L.; Xu, S. Hierarchical Edge Cloud Enabling Network Slicing for 5G Optical Fronthaul. J. Opt. Commun. Netw. 2019, 11, B60–B70. [Google Scholar] [CrossRef]
- Nonde, L.; Elgorashi, T.E.; Elmirgahni, J.M. Virtual Network Embedding Employing Renewable Energy Sources. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Zhu, M.; Gao, P.; Zhang, J.; Zeng, X.; Zhang, S. Energy Efficient Dynamic Virtual Optical Network Embedding in Sliceable-Transponder-Equipped EONs. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Nonde, L.; El-gorashi, T.E.H.; Elmirghani, J.M.H. Energy Efficient Virtual Network Embedding for Cloud Networks. J. Lightwave Technol. 2015, 33, 1828–1849. [Google Scholar] [CrossRef]
- Xiong, Y.; Shi, J.; Yang, Y.; Lv, Y.; Rouskas, G.N. Lightpath Management in SDN-Based Elastic Optical Networks with Power Consumption Considerations. J. Lightwave Technol. 2018, 36, 1650–1660. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, S.; Shuang, K.; Li, W.; Zia, M.A. Energy Aware Virtual Network Migration. In Proceedings of the GLOBECOM 2016—2016 IEEE Global Communications Conference, Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Guo, B.; Qiao, C.; Wang, J.; Yu, H.; Zuo, Y.; Li, J.; Chen, Z.; He, Y. Survivable Virtual Network Design and Embedding to Survive a Facility Node Failure. J. Lightwave Technol. 2014, 32, 483–493. [Google Scholar] [CrossRef]
- Li, X.; Gao, T.; Zhang, L.; Tang, Y.; Zhang, Y.; Huang, S. Survivable K-Node (Edge) Content Connected Virtual Optical Network (KC-VON) Embedding Over Elastic Optical Data Center Networks. IEEE Access 2018, 6, 38780–38793. [Google Scholar] [CrossRef]
- Su, Y.; Meng, X.; Kang, Q.; Han, X. Survivable Virtual Network Link Protection Method Based on Network Coding and Protection Circuit. IEEE Access 2018, 6, 67477–67493. [Google Scholar] [CrossRef]
- Khan, A.; An, X.; Iwashina, S. Virtual Network Embedding for telco-grade Network Protection and Service Availability. Comput. Commun. 2016, 84, 25–38. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Ahmed, R.; Khan, M.M.A.; Shahriar, N.; Boutaba, R.; Mitra, J.; Zeng, F. Dedicated Protection for Survivable Virtual Network Embedding. IEEE Trans. Netw. Serv. Manag. 2016, 13, 913–926. [Google Scholar] [CrossRef]
- Ayoubi, S.; Chen, Y.; Assi, C. Towards Promoting Backup-Sharing in Survivable Virtual Network Design. IEEE/ACM Trans. Netw. 2016, 24, 3218–3231. [Google Scholar] [CrossRef]
- Aguado, A.; Davis, M.; Peng, S.; Álvarez, M.V.; López, V.; Szyrkowiec, T.; Autenrieth, A.; Vilalta, R.; Mayoral, A.; Muñoz, R.; et al. Dynamic Virtual Network Reconfiguration over SDN Orchestrated Multitechnology Optical Transport Domains. J. Lightwave Technol. 2016, 34, 1933–1938. [Google Scholar] [CrossRef]
- Kondepu, K.; Sgambelluri, A.; Sambo, N.; Giannone, F.; Castoldi, P.; Valcarenghi, L. Orchestrating Lightpath Recovery and Flexible Functional Split to Preserve Virtualized RAN Connectivity. J. Opt. Commun. Netw. 2018, 10, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, S.; Kondepu, K.; Mirkhanzadeh, B.; Razo, M.; Tacca, M.; Valcarenghi, L.; Fumagalli, A. Performance Evaluation of Two Service Recovery Strategies in Cloud-Native Radio Access Networks. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 1–5. [Google Scholar]
- Gao, T.; Zou, W.; Li, X.; Guo, B.; Huang, S.; Mukherjee, B. Distributed Sub-light-tree based Multicast Provisioning with Shared Protection in Elastic Optical Datacenter Networks. Opt. Switch. Netw. 2019, 31, 39–51. [Google Scholar] [CrossRef]
- Andreoletti, D.; Troia, S.; Musumeci, F.; Giordano, S.; Maier, G.; Tornatore, M. Network Traffic Prediction based on Diffusion Convolutional Recurrent Neural Networks. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 1–6. [Google Scholar]
- Cao, X.; Zhong, Y.; Zhou, Y.; Wang, J.; Zhu, C.; Zhang, W. Interactive Temporal Recurrent Convolution Network for Traffic Prediction in Data Centers. IEEE Access 2017, 6, 5276–5289. [Google Scholar] [CrossRef]
- Singh, S.K.; Jukan, A. Machine-Learning-Based Prediction for Resource (Re)allocation in Optical Data Center Networks. J. Opt. Commun. Netw. 2018, 10, D12–D28. [Google Scholar] [CrossRef]
- Mata, J.; de Miguel, I.; Durán, R.J.; Merayo, N.; Singh, S.K.; Jukan, A.; Chamania, M. Artificial Intelligence (AI) Methods in Optical Networks: A Comprehensive Survey. Opt. Switch. Netw. 2018, 28, 43–57. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Yang, W.; Hu, D.; Wang, X.; Xu, W. Predicting Inter-Data-Center Network Traffic Using Elephant Flow and Sublink Information. IEEE Trans. Netw. Serv. Manag. 2016, 13, 782–792. [Google Scholar] [CrossRef]
- Fadlullah, Z.M.; Tang, F.; Mao, B.; oKato, N.; Akashi, O.; Inoue, T.; Mizutani, K. State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Commun. Surv. Tutor. 2017, 19, 2432–2455. [Google Scholar] [CrossRef]
- Troia, S.; Alvizu, R.; Zhou, Y.; Maier, G.; Pattavina, A. Deep Learning-Based Traffic Prediction for Network Optimization. In Proceedings of the International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar]
- Azzouni, A.; Pujolle, G. NeuTM: A Neural Network-based Framework for Traffic Matrix Prediction in SDN. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–5. [Google Scholar]
- Jiang, H.; Wang, Y.; Gong, L.; Zhu, Z. Availability-Aware Survivable Virtual Network Embedding in Optical Datacenter Networks. J. Opt. Commun. Netw. 2015, 7, 1160–1171. [Google Scholar] [CrossRef]
- Pagès, A.; Agraz, F.; Montero, R.; Landi, G.; Capitani, M.; Gallico, D.; Biancani, M.; Nejabati, R.; Simeonidou, D.; Spadaro, S. Orchestrating Virtual Slices in Data Centre Infrastructures with Optical DCN. Opt. Fiber Technol. 2019, 50, 36–49. [Google Scholar] [CrossRef]
- Cao, H.; Zhu, Y.; Zheng, G.; Yang, L. A Novel Optimal Mapping Algorithm with Less Computational Complexity for Virtual Network Embedding. IEEE Trans. Netw. Serv. Manag. 2018, 15, 356–371. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Guo, Y.; Qu, Z.; Wu, S.; Zhu, H.; Yang, L. ER-VNE: A Joint Energy and Revenue Embedding Algorithm for Embedding Virtual Networks. IEEE Access 2018, 6, 47815–47827. [Google Scholar] [CrossRef]
- Chowdhury, M.; Rahman, M.R.; Boutaba, R. ViNEYard: Virtual Network Embedding Algorithms with Coordinated Node and Link Mapping. IEEE/ACM Trans. Netw. 2012, 20, 206–219. [Google Scholar] [CrossRef]
- Jarray, A.; Karmouch, A. Decomposition Approaches for Virtual Network Embedding with One-shot Node and Link mapping. IEEE/ACM Trans. Netw. 2015, 23, 1012–1025. [Google Scholar] [CrossRef]
- Shahin, A.A. Memetic Multi-Objective Particle Swarm Optimization-Based Energy-Aware Virtual Network Embedding. Int. J. Adv. Comput. Sci. Appl. 2015, 6, 1–12. [Google Scholar]
- Li, R.; Zhao, Z.; Sun, Q.; Chih-Lin, I.; Yang, C.; Chen, X.; Zhao, M.; Zhang, H. Deep Reinforcement Learning for Resource Management in Network Slicing. IEEE Access 2018, 6, 74429–74441. [Google Scholar] [CrossRef]
- Sun, G.; Zemuy, G.T.; Xiong, K. Dynamic Reservation and Deep Reinforcement Learning based Autonomous Resource Management for Wireless Virtual Networks. In Proceedings of the International Performance Computing and Communications Conference (IPCCC), Orlando, FL, USA, 17–19 November 2018. [Google Scholar]
- Haeri, S.; Trajković, L. Virtual Network Embedding via Monte Carlo Tree Search. IEEE Trans. Cybern. 2018, 48, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, B.; Zhang, P.; Wu, S.; Jiang, C.; Guo, S. RDAM: A Reinforcement Learning Based Dynamic Attribute Matrix Representation for Virtual Network Embedding. IEEE Trans. Emerg. Top. Comput. 2018, 1–13. [Google Scholar] [CrossRef]
- Blenk, A.; Kalmbach, P.; Zerwas, J.; Jarschel, M.; Schmid, S.; Kellerer, W. NeuroViNE: A Neural Preprocessor for Your Virtual Network Embedding Algorithm. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 405–413. [Google Scholar]
- Dolati, M.; Hassanpour, S.B.; Ghaderi, M.; Khonsari, A. DeepViNE: Virtual Network Embedding with Deep Reinforcement Learning. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 879–885. [Google Scholar]
- Kitindi, E.J.; Fu, S.; Jia, Y.; Kabir, A.; Wang, Y. Wireless Network Virtualization with SDN and C-RAN for 5G Networks: Requirements, Opportunities, and Challenges. IEEE Access 2017, 5, 19099–19115. [Google Scholar] [CrossRef]
- Liang, C.; Yu, F.R. Wireless Network Virtualization: A Survey, Some Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 358–380. [Google Scholar] [CrossRef]
- Costanzo, S.; Fajjari, I.; Aitsaadi, N.; Langar, R. DEMO: SDN-based network slicing in C-RAN. In Proceedings of the 2018 15th IEEE Annual Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–2. [Google Scholar]
- Alemany, P.; Vilalta, R.; De La Cruz, J.L.; Pol, A.; Román, A.; Casellas, R.; Martínez, R.; Muñoz, R. Experimental Validation of Network Slicing Management for Vertical Applications on Multimedia Real-time Communications over a Packet/optical Network. In Proceedings of the 2019 21st International Conference on Transparent Optical Networks (ICTON), Angers, France, 9–13 July 2019; pp. 3–6. [Google Scholar]
- Zhao, C.; Parhami, B. Virtual Network Embedding Through Graph Eigenspace Alignment. IEEE Trans. Netw. Serv. Manag. 2019, 16, 632–646. [Google Scholar] [CrossRef]
- Pavon-Marino, P.; Izquierdo-Zaragoza, J.L. Net2plan: An Open Source Network Planning Tool for Bridging the Gap between Academia and Industry. IEEE Netw. 2015, 29, 90–96. [Google Scholar] [CrossRef]
- Romero-Gazquez, J.L.; Bueno-Delgado, M.V.; Moreno-Muro, F.J.; Pavon-Marino, P. Net2plan-GIS: An Open-Source Net2Plan Extension Integrating GIS Data for 5G Network Planning. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018. [Google Scholar]
- Garrich, M.; Hernández-Bastida, M.; San-Nicolás-Martínez, C.; Moreno-Muro, F.J.; Pavon-Marino, P. The Net2Plan-OpenStack Project: IT Resource Manager for Metropolitan SDN/NFV Ecosystems; OFC: Auckland, New Zealand, 2019. [Google Scholar]
- Szyrkowiec, T.; Autenrieth, A.; Gunning, P.; Wright, P.; Lord, A.; Elbers, J.-P.; Lumb, A. First Field Demonstration of Cloud Datacenter Workflow Automation Employing Dynamic Optical Transport Network Resources under OpenStack and OpenFlow Orchestration. Opt. Express 2014, 22, 2595–2602. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, J.; Ji, Y.; Tan, Y.; Lin, Y.; Han, J.; Lee, Y. Data Center Service Locationlization based on Virtual Resource Migration in software Defined Elastic Optical Network. In Proceedings of the IEEE Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 22–26 March 2015. [Google Scholar]
- Hammad, A.; Aguado, A.; Kondepu, K.; Zong, Y.; Marhuenda, J.; Yan, S.; Nejabati, R.; Simeonidou, D. Demonstration of NFV Content Delivery using SDN- enabled Virtual Infrastructures. In Proceedings of the IEEE Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017. [Google Scholar]
- Diallo, T.; Beldachi, A.F.; Muqaddas, A.S.; Silva, R.S.; Nejabati, R.; Tzanakaki, A.; Simeonidou, D. Enabling Heterogenous Low Latency and High- bandwidth Virtual Network Services for 5G Utilizing a Flexible Optical Transport Network. In Proceedings of the IEEE Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Minami, Y.; Taniguchi, A.; Kawabata, T.; Sakaida, N.; Shimano, K. An Architecture and Implementation of Automatic Network Slicing for Microservices. In Proceedings of the NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–4. [Google Scholar]
- Costanzo, S.; Cherrier, S.; Langar, R. Network Slicing Orchestration of IoT-BeC3applications and eMBB services in C-RAN. In Proceedings of the IEEE INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris, France, 29 April–2 May 2019; pp. 975–976. [Google Scholar]
- Landi, G.; Giardina, P.; Capitani, M.; Kondepu, K.; Valcarenghi, L.; Avino, G. Provisioning and automated scaling of network slices for virtual Content Delivery Networks in 5G infrastructures. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing, Catania, Italy, 2–5 July 2019; pp. 397–398. [Google Scholar]
- Ramanathan, S.; Tacca, M.; Razo, M.; Mirkhanzadeh, B.; Kondepu, K.; Giannone, F.; Valcarenghi, L.; Fumagalli, A. A programmable optical network testbed in support of C-RAN: a reliability study. Photonic Netw. Commun. 2019, 37, 311–321. [Google Scholar] [CrossRef]
- Ou, Y.; Yan, S.; Hammad, A.; Guo, B.; Peng, S.; Nejabati, R.; Simeonidou, D. Demonstration of Virtualizeable and Software-Defined Optical Transceiver. J. Lightwave Technol. 2016, 34, 1916–1924. [Google Scholar] [CrossRef]
- Ou, Y.; Davis, M.; Aguado, A.; Meng, F.; Nejabati, R.; Simeonidou, D. Optical Network Virtualisation Using Multitechnology Monitoring and SDN-Enabled Optical Transceiver. J. Lightwave Technol. 2018, 36, 1890–1898. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Bi, J.; Wu, J.; Vasilakos, A.V.; Fan, Q. VNE-TD: A Virtual Network Embedding Algorithm Based on Temporal- Difference Learning. Comput. Netw. 2019, 161, 251–263. [Google Scholar] [CrossRef]
- Yan, Z.; Ge, J.; Wu, Y.; Zheng, H.; Li, L.; Li, T. Automatic Virtual Network Embedding based on Deep Reinforcement Learning. In Proceedings of the IEEE International Conference on High Performance Computing and Communications, IEEE International Conference on Smart City and IEEE International Conference on Data Science and Systems, Zhangjiajie, China, 10–12 August 2019; pp. 625–631. [Google Scholar]
- Yan, Z.; Ge, J.; Wu, Y.; Li, L.; Li, T. Automatic Virtual Network Embedding: A Deep Reinforcement Learning Approach with Graph Convolutional Networks. IEEE J. Sel. Areas Commun. 2020. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Tian, J. Virtual Network Mapping based on the Prediction of Support Vector Machine. In Proceedings of the 2016 8th International Conference on Information Technology in Medicine and Education (ITME), Fuzhou, China, 23–25 December 2017; pp. 853–858. [Google Scholar]
- Alvizu, R.; Troia, S.; Maier, G.; Pattavina, A. Matheuristic With Machine-Learning-Based Prediction for Software- Defined Mobile Metro-Core Networks. J. Opt. Commun. Netw. 2017, 9, D19–D30. [Google Scholar] [CrossRef]
- Le, V.A.; Nguyen, P.L.; Ji, Y. Deep Convolutional LSTM Network-based Traffic Matrix Prediction with Partial Information. In Proceedings of the 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Arlington, TX, USA, 8–12 April 2019; pp. 261–269. [Google Scholar]
Algorithm | Network | Request Types | Objectives | Network Control | ILP | Node Ranking | Link Assignment | Reference |
---|---|---|---|---|---|---|---|---|
Two-stage | General | Dynamic | Revenue | N | Y | Available resource | KSP + splitting | [12] Yu et al. (2008) |
N | RW | KSP | [63] Zhang et al. (2012) | |||||
Cost | N | Y | Candidate node set | Candidate path set | [97] Cao et al. (2018) | |||
Energy efficiency | N | Y | Residual CPU | SP | [76] Zhang et al. (2016) | |||
Modified GRC | SP | [98] Cao et al. (2018) | ||||||
FiWi | Static | Survivablility | N | Y | Residual CPU | KSP | [36] Liu et al. (2019) | |
Inter—ODCN | Dynamic | Cost | N | Y | Available resource | SP | [95] Jiang et al. (2015) | |
Acceptance | Y | Y | Available resource | Candidate path set | [96]Pagès et al. (2019) | |||
EON | Static | Spectrum usage | N | Y | Random | KSP + splitting | [14] Shahriar et al. (2019) | |
Coordinated | General | Dynamic | Revenue | N | N | GRC | SP | [15] Gong et al. (2014) |
Cost | N | Y | Available resource | MCF + splitting | [99] Chowdhury et al. (2012) | |||
Energy efficiency+ Revenue | N | N | Candidate node set | SP | [101] Shahin et al. (2015) | |||
Revenue | N | Y | N/A | N/A | [100] Jarray et al. (2015) | |||
WSN | Dynamic | Revenue | N | N | N/A | anypath | [32] Li et al. (2017) | |
EON | Static | Cost | N | Y | N/A | SP | [57] Lin et al. (2018) | |
Spectrum usage | N | N | Random | KSP | [48] Xuan et al. (2017) | |||
Inter—ODCN | Static | Energy efficiency | Y | Y | Modified GRC | SP | [69] Zong et al. (2018) | |
Dynamic | Acceptance | Y | Y | Residual CPU | SP | [56] Fajjari et al. (2014) | ||
ML | IWN | Static | Latency | Y | N | N/A | Anypath | [24] Li et al. (2019) |
General | Dynamic | Revenue + cost | N | N | Residual CPU | N/A | [106] Blenk et al. (2018) | |
N/A | N/A | [107] Dolati et al. (2019) | ||||||
Profit | N | N | MCTS | MCF | [104] Haeri et al. (2018) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, Y.; Feng, C.; Guan, Y.; Liu, Y.; Guo, L. Virtual Network Embedding for Multi-Domain Heterogeneous Converged Optical Networks: Issues and Challenges. Sensors 2020, 20, 2655. https://doi.org/10.3390/s20092655
Zong Y, Feng C, Guan Y, Liu Y, Guo L. Virtual Network Embedding for Multi-Domain Heterogeneous Converged Optical Networks: Issues and Challenges. Sensors. 2020; 20(9):2655. https://doi.org/10.3390/s20092655
Chicago/Turabian StyleZong, Yue, Chuan Feng, Yingying Guan, Yejun Liu, and Lei Guo. 2020. "Virtual Network Embedding for Multi-Domain Heterogeneous Converged Optical Networks: Issues and Challenges" Sensors 20, no. 9: 2655. https://doi.org/10.3390/s20092655
APA StyleZong, Y., Feng, C., Guan, Y., Liu, Y., & Guo, L. (2020). Virtual Network Embedding for Multi-Domain Heterogeneous Converged Optical Networks: Issues and Challenges. Sensors, 20(9), 2655. https://doi.org/10.3390/s20092655