Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring
Abstract
:1. Introduction
1.1. Gait Features
1.2. Spatiotemporal Features
1.3. Kinetics Features
1.4. Kinematics Features
1.5. Gait Analysis Technologies
1.6. Machine Learning Algorithms Application for Gait Analysis
2. Materials and Methods
3. Results
3.1. Discrimination of Parkinson’s Disease from Healthy Subjects
3.2. Parkinson’s Disease Motor Status Discrimination
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gibb, W.R.G.; Lees, A.J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 1988, 51, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, G.; Copetti, M.; Arcuti, S.; Martino, D.; Fontana, A.; Logroscino, G. Accuracy of clinical diagnosis of Parkinson disease A systematic review and meta-analysis. Neurology 2016, 86, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Fahn, S. Parkinson disease, the effect of levodopa, and the ELLDOPA trial. Earlier vs Later L-DOPA. Arch. Neurol. 1999, 56, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Olanow, C.W.; Kieburtz, K.; Odin, P.; Espay, A.J.; Standaert, D.G.; Fernandez, H.H.; Vanagunas, A.; Othman, A.A.; Widnell, K.L.; Robieson, W.Z.; et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: A randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014, 13, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Salomone, G.; Marano, M.; di Biase, L.; Melgari, J.M.; Di Lazzaro, V. Dopamine dysregulation syndrome and punding in levodopa-carbidopa intestinal gel (LCIG) infusion: A serious but preventable complication. Parkinsonism Relat. Disord. 2015, 21, 1124–1125. [Google Scholar] [CrossRef] [PubMed]
- Melgari, J.M.; Salomone, G.; di Biase, L.; Marano, M.; Scrascia, F.; Di Lazzaro, V. Dyskinesias during levodopa-carbidopa intestinal gel (LCIG) infusion: Management inclinical practice. Parkinsonism Relat. Disord. 2015, 21, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Manson, A.J.; Turner, K.; Lees, A.J. Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson’s disease: Long-term follow-up study of 64 patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2002, 17, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Rizzone, M.; Fasano, A.; Daniele, A.; Zibetti, M.; Merola, A.; Rizzi, L.; Piano, C.; Piccininni, C.; Romito, L.; Lopiano, L. Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: From the advanced phase towards the late stage of the disease? Parkinsonism Relat. Disord. 2014, 20, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Di Biase, L.; Fasano, A. Low-frequency deep brain stimulation for Parkinson’s disease: Great expectation or false hope? Mov. Disord. 2016, 31, 962–967. [Google Scholar] [CrossRef]
- Kern, D.S.; Picillo, M.; Thompson, J.A.; Sammartino, F.; di Biase, L.; Munhoz, R.P.; Fasano, A. Interleaving Stimulation in Parkinson’s Disease, Tremor, and Dystonia. Stereotact. Funct. Neurosurg. 2018, 96, 379–391. [Google Scholar] [CrossRef]
- Sandoe, C.; Krishna, V.; Basha, D.; Sammartino, F.; Tatsch, J.; Picillo, M.; di Biase, L.; Poon, Y.Y.; Hamani, C.; Reddy, D.; et al. Predictors of deep brain stimulation outcome in tremor patients. Brain Stimul. 2018, 11, 592–599. [Google Scholar] [CrossRef]
- Tinkhauser, G.; Pogosyan, A.; Debove, I.; Nowacki, A.; Shah, S.A.; Seidel, K.; Tan, H.; Brittain, J.S.; Petermann, K.; di Biase, L.; et al. Directional local field potentials: A tool to optimize deep brain stimulation. Mov. Disord. Off. J. Mov. Disord. Soc. 2018, 33, 159–164. [Google Scholar] [CrossRef]
- Fahn, S.; Elton, R.L. Unified Parkinson’s disease rating scale. Recent Dev. Parkinson’s Dis. 1987, 2, 153–163. [Google Scholar]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, J.; Ambroise, J.; Cremers, J.; Sharei, H.; Delvaux, V.; Macq, B.; Garraux, G. Finger tapping clinimetric score prediction in Parkinson’s disease using low-cost accelerometers. Comput. Intell. Neurosci. 2013, 2013, 717853. [Google Scholar] [CrossRef] [PubMed]
- Summa, S.; Tosi, J.; Taffoni, F.; Di Biase, L.; Marano, M.; Rizzo, A.C.; Tombini, M.; Di Pino, G.; Formica, D. Assessing bradykinesia in Parkinson’s disease using gyroscope signals. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1556–1561. [Google Scholar]
- Di Biase, L.; Summa, S.; Tosi, J.; Taffoni, F.; Marano, M.; Cascio Rizzo, A.; Vecchio, F.; Formica, D.; Di Lazzaro, V.; Di Pino, G.; et al. Quantitative Analysis of Bradykinesia and Rigidity in Parkinson’s Disease. Front. Neurol. 2018, 9, 121. [Google Scholar] [CrossRef] [Green Version]
- Endo, T.; Okuno, R.; Yokoe, M.; Akazawa, K.; Sakoda, S. A novel method for systematic analysis of rigidity in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2009, 24, 2218–2224. [Google Scholar] [CrossRef]
- Kwon, Y.; Park, S.H.; Kim, J.W.; Ho, Y.; Jeon, H.M.; Bang, M.J.; Koh, S.B.; Kim, J.H.; Eom, G.M. Quantitative evaluation of parkinsonian rigidity during intra-operative deep brain stimulation. Bio-Med. Mater. Eng. 2014, 24, 2273–2281. [Google Scholar] [CrossRef] [Green Version]
- Raiano, L.; Di Pino, G.; Di Biase, L.; Tombini, M.; Tagliamonte, N.L.; Formica, D. PDMeter: A Wrist Wearable Device for an at-home Assessment of the Parkinson’s Disease Rigidity. IEEE Trans. Neural Syst. Rehabil. Eng. 2020. [Google Scholar] [CrossRef]
- Deuschl, G.; Krack, P.; Lauk, M.; Timmer, J. Clinical neurophysiology of tremor. J. Clin. Neurophysiol. 1996, 13, 110–121. [Google Scholar] [CrossRef]
- Di Pino, G.; Formica, D.; Melgari, J.-M.; Taffoni, F.; Salomone, G.; di Biase, L.; Caimo, E.; Vernieri, F.; Guglielmelli, E. Neurophysiological bases of tremors and accelerometric parameters analysis. In Proceedings of the 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1820–1825. [Google Scholar]
- Di Biase, L.; Brittain, J.S.; Shah, S.A.; Pedrosa, D.J.; Cagnan, H.; Mathy, A.; Chen, C.C.; Martin-Rodriguez, J.F.; Mir, P.; Timmerman, L.; et al. Tremor stability index: A new tool for differential diagnosis in tremor syndromes. Brain A J. Neurol. 2017, 140, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.T.; MacDougall, H.G.; Gracies, J.M.; Cohen, H.S.; Ondo, W.G. Long-term monitoring of gait in Parkinson’s disease. Gait Posture 2007, 26, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Schlachetzki, J.C.M.; Barth, J.; Marxreiter, F.; Gossler, J.; Kohl, Z.; Reinfelder, S.; Gassner, H.; Aminian, K.; Eskofier, B.M.; Winkler, J.; et al. Wearable sensors objectively measure gait parameters in Parkinson’s disease. PLoS ONE 2017, 12, e0183989. [Google Scholar] [CrossRef] [PubMed]
- Tosi, J.; Summa, S.; Taffoni, F.; di Biase, L; Marano, M.; Rizzo, A.C.; Tombini, M.; Schena, E.; Formica, D.; di Pino, G. Feature Extraction in Sit-to-Stand Task Using M-IMU Sensors and Evaluatiton in Parkinson’s Disease. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar]
- Suppa, A.; Kita, A.; Leodori, G.; Zampogna, A.; Nicolini, E.; Lorenzi, P.; Rao, R.; Irrera, F. L-DOPA and freezing of gait in Parkinson’s disease: Objective assessment through a wearable wireless system. Front. Neurol. 2017, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Bonato, P.; Camicioli, R.; Ellis, T.D.; Giladi, N.; Hamilton, J.L.; Hass, C.J.; Hausdorff, J.M.; Pelosin, E.; Almeida, Q.J. Gait impairments in Parkinson’s disease. Lancet Neurol. 2019, 18, 697–708. [Google Scholar] [CrossRef]
- Pistacchi, M.; Gioulis, M.; Sanson, F.; De Giovannini, E.; Filippi, G.; Rossetto, F.; Marsala, S.Z. Gait analysis and clinical correlations in early Parkinson’s disease. Funct. Neurol. 2017, 32, 28–34. [Google Scholar] [CrossRef]
- Son, M.; Youm, C.; Cheon, S.; Kim, J.; Lee, M.; Kim, Y.; Kim, J.; Sung, H. Evaluation of the turning characteristics according to the severity of Parkinson disease during the timed up and go test. Aging Clin. Exp. Res. 2017, 29, 1191–1199. [Google Scholar] [CrossRef]
- Dicharry, J. Kinematics and kinetics of gait: From lab to clinic. Clin. Sports Med. 2010, 29, 347–364. [Google Scholar] [CrossRef]
- Webster, J.B.; Darter, B.J. Principles of Normal and Pathologic Gait. In Atlas of Orthoses and Assistive Devices; Elsevier: London, UK, 2019; pp. 49–62. [Google Scholar]
- Alvaro Muro-de-la-Herran, B.G.-Z.; Mendez-Zorrilla, A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.; Liu, T.; Zheng, R.; Feng, H. Gait analysis using wearable sensors. Sensors 2012, 12, 2255–2283. [Google Scholar] [CrossRef]
- Dominguez, G.; Cardiel, E.; Arias, S.; Rogeli, P. A Digital Goniometer Based on Encoders for Measuring Knee-Joint Position in an Orthosis. In Proceedings of the 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), Fargo, ND, USA, 12–14 August 2013; pp. 1–4. [Google Scholar]
- Bae, J.; Tomizuka, M. A tele-monitoring system for gait rehabilitation with an inertial measurement unit and a shoe-type ground reaction force sensor. Mechatronics 2013, 23, 646–651. [Google Scholar] [CrossRef]
- Davis, R.B. Clinical gait analysis. IEEE Eng. Med. Biol. 1988, 7, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Rainoldi, A.; Melchiorri, G.; Caruso, I. A method for positioning electrodes during surface EMG recordings in lower limb muscles. J. Neurosci. Methods 2004, 134, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Soh, C.B.; Gunawan, E.; Low, K.S.; Maskooki, A. Using Wearable UWB Radios to Measure Foot Clearance During Walking. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5199–5202. [Google Scholar]
- Wahab, Y.; Bakar, N.A. Gait Analysis Measurement for Sport Application Based on Ultrasonic System. In Proceedings of the 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), Singapore, 14–17 June 2011; pp. 20–24. [Google Scholar]
- Leusmann, P.; Mollering, C.; Klack, L.; Kasugai, K.; Ziefle, M.; Rumpe, B. Your Floor Knows Where You Are: Sensing and Acquisition of Movement Data. 2011 IEEE 12th Int. Conf. Mob. Data Manag. 2011, 2, 61–66. [Google Scholar]
- Vera-Rodriguez, R.; Mason, J.S.; Fierrez, J.; Ortega-Garcia, J. Comparative analysis and fusion of spatiotemporal information for footstep recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 823–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Washita, Y.; Kurazume, R.; Ogawara, K. Expanding Gait Identification Methods from Straightto Curved Trajectories. In Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV), Tampa, FL, USA, 15–17 January 2013; pp. 193–199. [Google Scholar]
- Pratheepan, Y.; Condell, J.V.; Prasad, G. The Use of Dynamic and Static Characteristics of Gait for Individual Identification. In Proceedings of the 13th International Machine Vision and Image Processing Conference, Dublin, Ireland, 2–4 September 2009; pp. 111–116. [Google Scholar]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med. -Open 2018, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Kolb, A.; Barth, E.; Koch, R.; Larsen, R. Time-of-Flight Cameras in Computer Graphics. Comput. Graph. Forum 2010, 29, 141–159. [Google Scholar] [CrossRef]
- Samson, W.; van Hamme, A.; Sanchez, S.; Chèze, L.; van Sint Jan, S.; Feipel, V. Dynamic footprint analysis by time-of-flight camera. Comput. Methods Biomech. Biomed. Engin. 2012, 15, 180–182. [Google Scholar] [CrossRef]
- Derawi, M.O.; Ali, H.; Cheikh, F.A. Gait Recognition Using Time-of-Flight Sensor. Available online: http://subs.emis.de/LNI/Proceedings/Proceedings191/187.pdf (accessed on 17 February 2014).
- Narayan, A.; Gomatam, M.; Sasi, S. Multimodal gait recognition based on stereo vision and 3D template matching. In Proceedings of the International Conference on Imaging Science, Systems and Technology, CISST’04, Las Vegas, NV, USA, 21–24 June 2004; pp. 405–410. [Google Scholar]
- Liu, H.; Cao, Y.; Wang, Z. Automatic Gait Recognition from a Distance. In Proceedings of the Control and Decision Conference (CCDC), Xuzhou, China, 26–28 May 2010; pp. 2777–2782. [Google Scholar]
- Clark, R.A.; Pua, Y.H.; Bryant, A.L.; Hunt, M.A. Validity of the Microsoft Kinect for providing lateral trunk lean feedback during gait retraining. Gait Posture 2013, 38, 1064–1066. [Google Scholar] [CrossRef]
- Xue, Z.; Ming, D.; Song, W.; Wan, B.; Jin, S. Infrared gait recognition based on wavelet transform and support vector machine. Pattern Recognit. 2010, 43, 2904–2910. [Google Scholar] [CrossRef]
- Salarian, A.; Russmann, H.; Vingerhoets, F.J.G.; Dehollaini, C.; Blanc, Y.; Burkhard, P.R.; Aminian, K. Gait assessment in Parkinson’s disease: Toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 2004, 51, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Bonora, G.; Mancini, M.; Carpinella, I.; Chiari, L.; Horak, F.B.; Ferrarin, M. Gait initiation is impaired in subjects with Parkinson’s disease in the OFF state: Evidence from the analysis of the anticipatory postural adjustments through wearable inertial sensors. Gait Posture 2017, 51, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memar, S.; Delrobaei, M.; Pieterman, M.; McIsaac, K.; Jog, M. Quantification of whole-body bradykinesia in Parkinson’s disease participants using multiple inertial sensors. J. Neurol. Sci. 2018, 387, 157–165. [Google Scholar] [CrossRef]
- Shah, J.; Pillai, L.; Williams, D.K.; Doerhoff, S.M.; Larson-Prior, L.; Garcia-Rill, E.; Virmani, T. Increased foot strike variability in Parkinson’s disease patients with freezing of gait. Parkinsonism Relat. Disord. 2018, 53, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.D. Clinical Gait Analysis. Clin. Gait Anal. 2006, 111, 35–40. [Google Scholar]
- Geroin, C.; Squintani, G.; Morini, A.; Donato, F.; Smania, N.; Gandolfi, M.; Tamburin, S.; Fasano, A.; Tinazzi, M. Pisa syndrome in Parkinson’s disease: Electromyographic quantification of paraspinal and non-paraspinal muscle activity. Funct. Neurol. 2017, 32, 143–151. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.-Y.; Choi, Y.-W.; Park, H.-K.; Cho, S.-H.; Cho, S.H.; Lim, Y.-H. A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Yim, D.; Lee, W.H.; Kim, J.I.; Kim, K.; Ahn, D.H.; Lim, Y.H.; Cho, S.H.; Park, H.K.; Cho, S.H. Quantified Activity Measurement for Medical Use in Movement Disorders through IR-UWB Radar Sensor. Sensors 2019, 19, 688. [Google Scholar] [CrossRef] [Green Version]
- Chong, C.C.; Watanabe, F.; Win, M.Z. Effect of bandwidth on UWB ranging error. IEEE Wirel. Commun. Netw. Conf. WCNC 2007, 1561–1566. [Google Scholar] [CrossRef]
- Ashhar, K.; Cheong Boon, S.; Keng He, K. A wearable ultrasonic sensor network for analysis of bilateral gait symmetry. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 4455–4458. [Google Scholar]
- Iwashita, Y.; Kurazume, R.; Ogawara, K. Expanding gait identification methods from straight to curved trajectories. 2013 IEEE Workshop Appl. Comput. Vis. 2013, 193–199. [Google Scholar] [CrossRef]
- Arias-Enriquez, O.; Chacon-Murguia, M.I.; Sandoval-Rodriguez, R. Kinematic Analysis of Gait Cycle Using a Fuzzy System for Medical Diagnosis. In Proceedings of the 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), Berkeley, CA, USA, 6–8 August 2012; pp. 1–6. [Google Scholar]
- Tucker, C.S.; Behoora, I.; Nembhard, H.B.; Lewis, M.; Sterling, N.W.; Huang, X. Machine learning classification of medication adherence in patients with movement disorders using non-wearable sensors. Comput. Boil. Med. 2015, 66, 120–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beam, A.L.; Kohane, I.S. Big data and machine learning in health care. Jama 2018, 319, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Valliani, A.A.-A.; Ranti, D.; Oermann, E.K. Deep Learning and Neurology: A Systematic Review. Neurol. Ther. 2019, 8, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Pathak, A.N.; Sehgal, M.; Christopher, D. A study on selective data mining algorithms. Int. J. Comput. Sci. Issues (IJCSI) 2011, 8, 479. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hyde, K.K.; Novack, M.N.; LaHaye, N.; Parlett-Pelleriti, C.; Anden, R.; Dixon, D.R.; Linstead, E. Applications of supervised machine learning in autism spectrum disorder research: A review. Rev. J. Autism Dev. Disord. 2019, 6, 128–146. [Google Scholar] [CrossRef] [Green Version]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer-Verlag New York Inc.: Secaucus, NJ, USA, 2006. [Google Scholar]
- Wan, E.A.; Van der Merwe, R. Kalman filtering and neural networks. Unscented Kalman Filter 2001, 7, 221–277. [Google Scholar]
- Sánchez-Ferro, Á.; Elshehabi, M.; Godinho, C.; Salkovic, D.; Hobert, M.A.; Domingos, J.; Uem, J.M.; Ferreira, J.J.; Maetzler, W. New methods for the assessment of Parkinson’s disease (2005 to 2015): A systematic review. Mov. Disord. 2016, 31, 1283–1292. [Google Scholar] [CrossRef]
- Brodersen, K.H.; Ong, C.S.; Stephan, K.E.; Buhmann, J.M. The Balanced Accuracy and Its Posterior Distribution. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 3121–3124. [Google Scholar]
- Tien, I.; Glaser, S.D.; Aminoff, M.J. Characterization of gait abnormalities in Parkinson’s disease using a wireless inertial sensor system. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aire, Argentina, 30 August–4 September 2010; pp. 3353–3356. [Google Scholar]
- Pogorelc, B.; Gams, M. Diagnosing health problems from gait patterns of elderly. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aire, Argentina, 30 August–4 September 2010; pp. 2238–2241. [Google Scholar]
- Barth, J.; Klucken, J.; Kugler, P.; Kammerer, T.; Steidl, R.; Winkler, J.; Hornegger, J.; Eskofier, B. Biometric and mobile gait analysis for early diagnosis and therapy monitoring in Parkinson’s disease. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 868–871. [Google Scholar]
- Yoneyama, M.; Kurihara, Y.; Watanabe, K.; Mitoma, H. Accelerometry-based gait analysis and its application to parkinson’s disease assessment-Part 2: A new measure for quantifying walking behavior. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Kugler, P.; Jaremenko, C.; Schlachetzki, J.; Winkler, J.; Klucken, J.; Eskofier, B. Automatic recognition of Parkinson’s disease using surface electromyography during standardized gait tests. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 5781–5784. [Google Scholar]
- Arora, S.; Venkataraman, V.; Donohue, S.; Biglan, K.M.; Dorsey, E.R.; Little, M.A. High accuracy discrimination of Parkinson’s disease participants from healthy controls using smartphones. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3641–3644. [Google Scholar]
- Procházka, A.; Vyšata, O.; Vališ, M.; upa, O.; Schätz, M.; Mařík, V. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit. Signal Process. A Rev. J. 2015, 47, 169–177. [Google Scholar] [CrossRef]
- Djurić-Jovičić, M.; Belić, M.; Stanković, I.; Radovanović, S.; Kostić, V.S. Selection of gait parameters for differential diagnostics of patients with de novo Parkinson’s disease. Neurol. Res. 2017, 39, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.N.; Garg, A.; Munia, T.T.K.; Fazel-Rezai, R.; Tavakolian, K. Vertical ground reaction force marker for Parkinson’s disease. PLoS ONE 2017, 12, e0175951. [Google Scholar] [CrossRef]
- Pham, T.D.; Yan, H. Tensor decomposition of gait dynamics in Parkinson’s disease. IEEE Trans. Biomed. Eng. 2018, 65, 1820–1827. [Google Scholar]
- Samà, A.; Pérez-López, C.; Rodríguez-Martín, D.; Català, A.; Moreno-Aróstegui, J.M.; Cabestany, J.; de Mingo, E.; Rodríguez-Molinero, A. Estimating bradykinesia severity in Parkinson’s disease by analysing gait through a waist-worn sensor. Comput. Biol. Med. 2017, 84, 114–123. [Google Scholar] [CrossRef]
- Bayés, À.; Samá, A.; Prats, A.; Pérez-López, C.; Crespo-Maraver, M.; Moreno, J.M.; Alcaine, S.; Rodriguez-Molinero, A.; Mestre, B.; Quispe, P.; et al. A “HOLTER” for Parkinson’s disease: Validation of the ability to detect on-off states using the REMPARK system. Gait Posture 2018, 59, 1–6. [Google Scholar] [CrossRef]
- Rodriguez-Molinero, A.; Sama, A.; Perez-Martinez, D.A.; Perez Lopez, C.; Romagosa, J.; Bayes, A.; Sanz, P.; Calopa, M.; Galvez-Barron, C.; de Mingo, E.; et al. Validation of a portable device for mapping motor and gait disturbances in Parkinson’s disease. JMIR mHealth uHealth 2015, 3, e9. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lopez, C.; Sama, A.; Rodriguez-Martin, D.; Moreno-Arostegui, J.M.; Cabestany, J.; Bayes, A.; Mestre, B.; Alcaine, S.; Quispe, P.; Laighin, G.O.; et al. Dopaminergic-induced dyskinesia assessment based on a single belt-worn accelerometer. Artif. Intell. Med. 2016, 67, 47–56. [Google Scholar] [CrossRef]
- Baron, E.I.; Koop, M.M.; Streicher, M.C.; Rosenfeldt, A.B.; Alberts, J.L. Altered kinematics of arm swing in Parkinson’s disease patients indicates declines in gait under dual-task conditions. Park. Relat. Disord. 2018, 48, 61–67. [Google Scholar] [CrossRef]
- Yang, Y.-R.; Lee, Y.-Y.; Cheng, S.-J.; Lin, P.-Y.; Wang, R.-Y. Relationships between gait and dynamic balance in early Parkinson’s disease. Gait Posture 2008, 27, 611–615. [Google Scholar] [CrossRef]
- Rochester, L.; Galna, B.; Lord, S.; Burn, D. The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience 2014, 265, 83–94. [Google Scholar] [CrossRef]
- Galna, B.; Lord, S.; Burn, D.J.; Rochester, L. Progression of gait dysfunction in incident Parkinson’s disease: Impact of medication and phenotype. Mov. Disord. Off. J. Mov. Disord. Soc. 2015, 30, 359–367. [Google Scholar] [CrossRef]
- Langevin, R.; Ali, M.R.; Sen, T.; Snyder, C.; Myers, T.; Dorsey, E.R.; Hoque, M.E. The PARK Framework for Automated Analysis of Parkinson’s Disease Characteristics. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–22. [Google Scholar] [CrossRef]
- Wu, P.; Gonzalez, I.; Patsis, G.; Jiang, D.; Sahli, H.; Kerckhofs, E.; Vandekerckhove, M. Objectifying facial expressivity assessment of Parkinson’s patients: Preliminary study. Comput. Math. Methods Med. 2014, 2014, 427826. [Google Scholar] [CrossRef] [PubMed]
- Tsanas, A.; Little, M.A.; McSharry, P.E.; Ramig, L.O. Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity. J. R. Soc. Interface 2011, 8, 842–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsanas, A.; Little, M.A.; McSharry, P.E.; Ramig, L.O. Accurate telemonitoring of Parkinson’s disease progression by noninvasive speech tests. IEEE Trans. Biomed. Eng. 2010, 57, 884–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gait Cycle | The time from initial contact to initial contact on the same foot including both the stance phase and swing phase. |
Stance Phase | The period during which the foot is in contact with the support surface during one gait cycle. |
Swing Phase | The period during which the foot is airborne during one gait cycle. |
Double Limb Support | The period during which both feet are in contact with the support surface during one gait cycle. |
Single Limb Support | The period during which only one foot is in contact with the support surface during one gait cycle. |
Step Duration | The period between 2 successive events of the same type on opposite limbs. |
Stride Length | The linear distance between 2 successive events (initial contact) on the same limb. |
Step Length | The linear distance between 2 successive events of same type on opposite limbs. |
Step Width | The horizontal distance between 2 points on opposite limbs. |
Foot Progression Angle | The angle between the longitudinal axis of the foot and the line of gait progression. |
Algorithm | How It Works | Interpretability (+): Min (+++++): Max |
---|---|---|
k Nearest Neighbor (kNN): | Categorizes objects based on the classes of the nearest neighbors in the dataset. The function is estimated only locally and all of the calculations are delayed up to the prediction or classification. The kNN method is sensitive to the dataset [70]. | +++ |
Linear Support Vector Machine (SVM): | Classifies data by finding the linear decision boundary (hyperplane) that separates all data points of one class from those of the other class [71]. The best hyperplane for an SVM is the one with the largest margin between the two classes, when the data is linearly separable [72,73]. | +++ |
Kernel Support Vector Machine (Kernel SVM): | Similar to SVM but additionally uses the “kernel trick” to transform the input data (not linearly separable) into a new feature space (linearly separable) | ++ |
Artificial Neural Networks (ANNs) | Inspired by the connectivity of neurons in the human brain, a neural network consists of highly connected networks of neurons that relate the inputs to the desired outputs [74]. Each nonlinear function in the network can be used for the mapping from the training inputs to the training outputs. | + |
Naïve Bayes (NB) | A naïve Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature and uses the Bayes theorem to determine the posterior probability | +++ |
Linear Discriminant Analysis (LDA) | It classifies data by finding linear combinations of features. Discriminant Analysis (DA) assumes that different classes generate data based on Gaussian distributions. The distributions parameters are used to calculate boundaries, which can be linear or quadratic functions. | ++++ |
Decision Tree (DT) | It predicts responses to data by following the decisions in the tree-algorithm from the root (beginning) down to a leaf node. DTs can solve a classification problem by continuously dividing the input space to build a tree on which the nodes are as pure as possible and contain points of a single class. DTs are considered naïve algorithms; however, they have great performances in prediction and classification applications. | +++++ |
Random forest | An ensemble technique that uses a very large number of decision trees, often resulting in improved accuracy over DTs at the expense of reduced interpretability | + |
Domain | Search String |
---|---|
Disease | (“Parkinsonian Disorders” OR “Parkinson disease” OR “Parkinson Disease, Secondary” OR “Basal Ganglia Diseases” OR “Parkinsonism” OR “Parkinson’s Disease”) AND |
Technology | (“Technology” OR “Technologies” OR “Diagnostic Techniques, Neurological” OR “Assessment” OR “Patient Outcome Assessment” OR “Symptom Assessment” OR “Evaluation” OR “Diagnostic Self Evaluation” OR “Investigative Techniques” OR “Wireless Technology” OR “Remote Sensing Technology” OR “Biomedical Technology” OR “Technology Assessment, Biomedical” OR “Medical Informatics” OR “Cloud Computing” OR “Point of Care systems” OR “Biomedical Engineering” OR “Machine Learning” OR “Artificial Intelligence” OR “Kinesis” OR “Mobile Applications” OR “Cell Phones” OR “Smartphones” OR “Software” OR “Software Validation” OR “Platform” OR “Accelerometer” OR “Gyroscope” OR “Magnetometer” OR “Actigraph” OR “Wearable” OR “Device” OR “Big Data” OR “Sensor” OR “Internet of Things” OR “Closed-loop System” OR “Hybrid” OR “Home monitoring” OR “Quantitative” OR “Algorithm” OR “Telemetry” OR “Instrumented” OR “Virtual Reality”) AND |
Axial symptoms | (“Gait” OR “Gait Disorders, Neurologic” OR “Posture” OR “Posture Balance” OR “Freezing of Gait” OR “Gait Disturbances” OR “Postural Instability” OR “Falls” OR “Fall”) AND |
Time range | (“2005/01/01”[PDAT]: “2019/08/30”[PDAT]) |
Ref | Algorithm | N. Features | N. Patients/Healthy | Regular Accuracy | Balanced Accuracy | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|
[77] | SVM | 15 | NA | 94.6% | 93.3% | 95.8% | |
[78] | Decision tree | 13 | 25/45 | 95% | 92.3% | 88.8% | 95.8% |
[78] | Neural Network | 13 | 25/45 | 99% | 100.0% | 100.0% | 100.0% |
[79] | LDA | 12 | 27/16 | NA | 87.0% | 88.0% | 86.0% |
[80] | NA | 3 | 10/17 | 96.3 | 97.1% | 100.0% | 94.1% |
[81] | SVM | 8 | 5/5 | NA | 90.0% | 90.0% | 90.0% |
[82] | Random forest | 23 | 10/10 | NA | 98.1% | 98.5% | 97.6% |
[83] | Bayesian probability | 2 | 18/33 | 92.2% | 93.3% | 94.4% | 92.2% |
[83] | Bayesian probability | 2 | 18/33 | 94.1% | 94.2% | 94.4% | 93.9% |
[84] | SVM | 19 | 40/40 | 85.0% | 83.5% | 85.0% | 82.0% |
[85] | SVM | 13 | 29/18 | 95.7% | 95.5% | 94.4% | 96.6% |
[85] | Random forest | 13 | 29/18 | 89.4% | 89.3% | 88.9% | 89.7% |
[85] | kNN | 13 | 29/18 | 85.1% | 84.8% | 83.3% | 86.2% |
[85] | Decision tree | 13 | 29/18 | 87.2% | 87.6% | 88.9% | 86.2% |
[86] | Tensor decomposition | 16 | 93/72 | 100.0% | 100.0% | 100.0% | 100.0% |
Ref | Algorithm | Features |
---|---|---|
[77] | SVM | Pitch
|
[78] |
|
|
[79] | LDA | Step features
|
[80] | NA |
|
[81] | SVM | EMG statistics
|
[82] | Random forest |
|
[83] | Bayesian probability |
|
[83] | Bayesian probability |
|
[84] | SVM |
|
[85] |
|
|
[86] | Tensor decomposition |
|
Ref | Algorithm | N. Features | N. Patients | Regular Accuracy | Balanced Accuracy | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|
[79] | LDA | 12 | 27 | NA | 100.00% | 100.00% | 100.00% |
[87] | SVM | 1 | 12 | 91.81% | 90.80% | 92.52% | 89.07% |
[88] | NA | NA | 41 | NA | 92.50% | 97.00% | 88.00% |
Ref | Algorithm | Features |
---|---|---|
[79] | LDA | Step features
|
[87] | SVM |
|
[88] | NA | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Biase, L.; Di Santo, A.; Caminiti, M.L.; De Liso, A.; Shah, S.A.; Ricci, L.; Di Lazzaro, V. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors 2020, 20, 3529. https://doi.org/10.3390/s20123529
di Biase L, Di Santo A, Caminiti ML, De Liso A, Shah SA, Ricci L, Di Lazzaro V. Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring. Sensors. 2020; 20(12):3529. https://doi.org/10.3390/s20123529
Chicago/Turabian Styledi Biase, Lazzaro, Alessandro Di Santo, Maria Letizia Caminiti, Alfredo De Liso, Syed Ahmar Shah, Lorenzo Ricci, and Vincenzo Di Lazzaro. 2020. "Gait Analysis in Parkinson’s Disease: An Overview of the Most Accurate Markers for Diagnosis and Symptoms Monitoring" Sensors 20, no. 12: 3529. https://doi.org/10.3390/s20123529