Automatic Cow Location Tracking System Using Ear Tag Visual Analysis
Abstract
:1. Introduction
2. Related Works
3. Proposed System
3.1. Cow Head Detection and Localization
3.2. Ear Tag Detection and Filtering
3.2.1. Initial Noise Removal
3.2.2. Blurred and Fur Covered Image Removal
3.3. Normalization for Ear Tag Alignment
3.4. Ear Tag Recognition Process
3.4.1. Preprocessing
- Calculate horizontal projection values for the preprocessed image.
- Remove horizontal (upper and lower) borders with projection values that are less than half of the width of the image.
- Crop the original RGB image, preprocess the cropped image, and calculate vertical projection values.
- Then, remove vertical (left and right) borders that have projection values less than two-thirds of the height of the preprocessed image.
3.4.2. Segmentation
- The remaining digit height must be greater than 1.7 times that of the barcode’s height.
- The largest object width in the barcode area must be greater than half of the image’s width.
3.4.3. Digit Object Determination
- The object’s width is less than its height; and,
- The object’s height is greater than two-thirds of the image’s height.
3.4.4. Ear Tag Recognition
3.4.5. Ear Tag Confirmation Process
- The length is less than ‘3’ (D1).
- The length is exactly ‘3’, but no match is found in the three-digit list (D2).
- The length is exactly ‘3’ and more than one match occurs in the three-digit list, but no match is found in the ear tag history (D3).
- No intersected result occurs for any of the three-digit pairs of cut ear tags (D4).
- More than one intersected result occurs, but no match is found in the ear tag history (D5).
- The length is exactly ‘3’ and one match is found in the three-digit list (S1).
- The length is exactly ‘3’. More than one match is found in the three-digit list and one of the results matches in the ear tag history (S2).
- One match is found for the cut ear tag in the four-digit list (S3).
- One intersected result occurs for a three-digit pair of cut ear tags (S4).
- More than one intersected result occurs, and one match is found in the ear tag history (S5).
3.5. Decision Making
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Katsuaki, S.; Takashi, O. Cattle traceability system in Japan for bovine spongiform encephalopathy. Vet. Ital. 2008, 44, 519–526. [Google Scholar]
- Zin, T.T.; Phyo, C.N.; Tin, P.; Hama, H.; Kobayashi, I. Image Technology based Cow Identification System Using Deep Learning. In Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong Kong, China, 14–16 March 2018. [Google Scholar]
- Zin, T.T.; Misawa, S.; Pwint, M.Z.; Thant, S.; Seint, P.T.; Sumi, K.; Yoshida, K. Cow Identification System using Ear Tag Recognition. In Proceedings of the 2020 IEEE 2nd Global Conference on Life Sciences and Technologies (LifeTech), Mielparque, Kyoto, Japan, 10–12 March 2020. [Google Scholar]
- Qiao, Y.; Su, D.; Kong, H.; Sukkarieh, S.; Lomax, S.; Clark, C. Individual Cattle Identification Using a Deep Learning Based Framework. IFAC-Papers OnLine 2019, 52, 318–323. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Jiang, B.; Wu, Q.; Yin, X.; Wu, D.; Song, H.; He, D. FLYOLOv3 deep learning for key parts of dairy cow body detection. Comput. Electron. Agric. 2019, 166, 104982. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K. Progressive neural architecture search. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Yao, L.; Hu, Z.; Liu, C.; Liu, H.; Kuang, Y.; Gao, Y. Cow face detection and recognition based on automatic feature extraction algorithm. In Proceedings of the ACM Turing Celebration Conference-China, Chengdu, China, 17–19 May 2019. [Google Scholar]
- Awad, A.I.; Hassaballah, M. Bag-of-Visual-Words for Cattle Identification from Muzzle Print Images. Appl. Sci. 2019, 9, 4914. [Google Scholar] [CrossRef] [Green Version]
- Ilestrand, M. Automatic Eartag Recognition on Dairy Cows in Real Barn Environment. Master’s Thesis, Linköping University, Linköping, Sweden, 2017. [Google Scholar]
- Qi, W.; Su, H.; Aliverti, A. Smartphone-Based Adaptive Recognition and Real-Time Monitoring System for Human Activities. IEEE Trans. Hum.-Mach. Syst. 2020. [Google Scholar] [CrossRef]
- Su, H.; Qi, W.; Yang, C.; Sandoval, J.; Ferrigno, G.; Momi, E.D. Deep neural network approach in robot tool dynamics identification for bilateral teleoperation. IEEE Robot. Autom. Lett. 2020, 5, 2943–2949. [Google Scholar] [CrossRef]
- Guo, J.M.; Liu, Y.F. License Plate Localization and Character Segmentation with Feedback Self-learning and Hybrid Binarization Techniques. IEEE Trans. Veh. Technol. 2008, 57, 1417–1424. [Google Scholar]
- Singh, V.; Lal, S.P. Digits Recognition using Single Layer Neural Network with Principal Component Analysis. In Proceedings of the Asia-Pacific World Congress on Computer Science and Engineering, Nadi, Fiji, 4–5 November 2014. [Google Scholar]
- Al-Abudi, B.Q. Digit Recognition using Fractal and Moment Invariants. Iraqi J. Sci. 2009, 50, 110–119. [Google Scholar]
- Jacobs, C.; Simard, P.Y.; Viola, P.; Rinker, J. Text Recognition of Low-resolution Document Images. In Proceedings of the International Conference on Document Analysis and Recognition (ICDAR), Seoul, Korea, 31 August–1 September 2005. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017. [Google Scholar]
- MathWorks. Available online: https://www.mathworks.com/help/vision/examples/create-yolo-v2-object-detection-network.html;jsessionid=24ebe83c7eb3c82e9c56a3de08fb (accessed on 8 May 2020).
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Hough, P.V.C. Machine Analysis of Bubble Chamber Pictures. Available online: https://s3.cern.ch/inspire-prod-files-5/53d80b0393096ba4afe34f5b65152090 (accessed on 22 June 2020).
- Prewitt, J.M. Object enhancement and extraction. In Picture Processing and Psychopictorics, 1st ed.; Academic Press: Cambridge, MA, USA, 1970; Volume 10, pp. 15–19. [Google Scholar]
- Anupama, N.; Rupa, C.; Reddy, E.S. Character Segmentation for Telugu Image Document using Multiple Histogram Projections. IJCSIT 2013, 13, 11–15. [Google Scholar]
- Anil, R.; Manjusha, K.; Kumar, S.S.; Soman, K.P. Convolutional Neural Networks for the Recognition of Malayalam Characters. In Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Bhubaneswar, Odisa, India, 14–15 November 2014. [Google Scholar]
Dataset | #Image Frames | #Cow Heads |
---|---|---|
Training | 6475 | 26,371 |
Validation | 1080 | 4429 |
Testing | 3238 | 13,227 |
Ear Tag Confirmation | Cow 1 | Cow 2 | Cow 3 | Cow 4 | ||||
---|---|---|---|---|---|---|---|---|
Left | Right | Left | Right | Left | Right | Left | Right | |
Frame 1 | 112 | - | 069 | 064 | 5208 | 52087 | 99231 | 7231 |
Result 1 | 1127(S1) | −(D1) | −(D2) | 0647(S1) | 5208(S3) | 5208(S3) | 9230(S4) | −(D4) |
Frame 2 | 11 | 1127 | 11641 | 064 | 520 | 15203 | 9230 | 9230 |
Result 2 | −(D1) | 1127(S3) | −(D4) | 0647(S1) | 5208(S2) | 5208(S5) | 9230(S3) | 9230(S3) |
Frame 3 | 124 | 1247 | 0647 | 11647 | 5208 | 5202 | 7280 | 9230 |
Result 3 | −(D3) | −(D5) | 0647(S3) | 0647(S4) | 5208(S3) | 5202(S3) | −(D4) | 9230(S3) |
Frames | Cow Head Regions | ||||
---|---|---|---|---|---|
ROI 1 | ROI 2 | ROI 3 | ROI 4 | ROI 5 | |
1 | 1 | 0 | 1 | 0 | 1 |
2 | 1 | 1 | 1 | 0 | 1 |
3 | 1 | 0 | 1 | 0 | 1 |
… | … | … | … | … | … |
29 | 1 | 0 | 1 | 1 | 0 |
30 | 1 | 0 | 1 | 0 | 1 |
Occurrence Count | 27 | 5 | 30 | 3 | 27 |
Percentage | 90% | 16% | 100% | 10% | 90% |
Cow Present | ‘Yes’ | ‘No’ | ‘Yes’ | ‘No’ | ‘Yes’ |
No. | Video | Number of Cows | Head Detection Rate | Ear Tag Digit Classification Rate |
---|---|---|---|---|
1. | Video 1 | 5 | 100% | 100% (5 out of 5) |
2. | Video 2 | 5 | 100% | 80% (4 out of 5) |
3. | Video 3 | 4 | 100% | 100% (4 out of 4) |
4. | Video 4 | 4 | 100% | 100% (4 out of 4) |
5. | Video 5 | 4 | 100% | 100% (4 out of 4) |
6. | Video 6 | 5 | 100% | 100% (5 out of 5) |
7. | Video 7 | 5 | 100% | 100% (5 out of 5) |
8. | Video 8 | 5 | 100% | 80% (4 out of 5) |
9. | Video 9 | 5 | 100% | 100% (5 out of 5) |
10. | Video 10 | 5 | 100% | 80% (4 out of 5) |
11. | Video 11 | 3 | 100% | 100% (3 out of 3) |
12. | Video 12 | 5 | 100% | 100% (5 out of 5) |
13. | Video 13 | 5 | 100% | 80% (4 out of 5) |
14. | Video 14 | 4 | 100% | 75% (3 out of 4) |
15. | Video 15 | 4 | 100% | 75% (3 out of 4) |
16. | Video 16 | 5 | 100% | 80% (4 out of 5) |
17. | Video 17 | 4 | 100% | 100% (4 out of 4) |
18. | Video 18 | 3 | 100% | 100% (3 out of 3) |
19. | Video 19 | 5 | 100% | 100% (5 out of 5) |
20. | Video 20 | 5 | 100% | 100% (5 out of 5) |
Overall Accuracy | 100% | 92.5% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zin, T.T.; Pwint, M.Z.; Seint, P.T.; Thant, S.; Misawa, S.; Sumi, K.; Yoshida, K. Automatic Cow Location Tracking System Using Ear Tag Visual Analysis. Sensors 2020, 20, 3564. https://doi.org/10.3390/s20123564
Zin TT, Pwint MZ, Seint PT, Thant S, Misawa S, Sumi K, Yoshida K. Automatic Cow Location Tracking System Using Ear Tag Visual Analysis. Sensors. 2020; 20(12):3564. https://doi.org/10.3390/s20123564
Chicago/Turabian StyleZin, Thi Thi, Moe Zet Pwint, Pann Thinzar Seint, Shin Thant, Shuhei Misawa, Kosuke Sumi, and Kyohiro Yoshida. 2020. "Automatic Cow Location Tracking System Using Ear Tag Visual Analysis" Sensors 20, no. 12: 3564. https://doi.org/10.3390/s20123564