Single-Shot 3D Shape Reconstruction Using Structured Light and Deep Convolutional Neural Networks
Abstract
:1. Introduction
2. Methodology
2.1. Fringe Projection Profilometry (FPP) Technique for Training Data Generation
2.2. Network Architecture
- Fully convolutional networks (FCN). The FCN is a well-known network for semantic segmentation. FCN adopts the encoder path from the contemporary classification networks and transforms the fully connected layers into convolution layers before upsampling the coarse output map to the same size as the input. The FCN-8s architecture [19] is adopted in this paper to prevent the loss of spatial information, and the network has been modified to work with the input image and yield the desired output information of depth.
- Autoencoder networks (AEN). The AEN has an encoder path and a symmetric decoder path. The proposed AEN has totally 33 layers, including 22 standard convolution layers, 5 max pooling layers, 5 transpose operation layers, and a convolution layer.
- UNet. The UNet is also a well-known network [20], and it has a similar architecture to the AEN. The key difference is that in the UNet the local context information from the encoder path is concatenated with the upsampled output, which can help increase the resolution of the final output.
3. Experiments and Results
3.1. Training and Test Data Acquisition
3.2. Training, Analysis, and Evaluation
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, X.; Zhang, Q. Dynamic 3-D shape measurement method: A review. Opt. Lasers Eng. 2010, 48, 191–204. [Google Scholar] [CrossRef]
- Geng, J. Structured-light 3D surface imaging: A tutorial. Adv Opt. Photonics 2011, 2, 128–160. [Google Scholar] [CrossRef]
- Zhang, S. High-speed 3D shape measurement with structured light methods: A review. Opt. Lasers Eng. 2018, 106, 119–131. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, S. A review of 3D reconstruction techniques in civil engineering and their applications. Adv. Eng. Inf. 2018, 38, 163–174. [Google Scholar] [CrossRef]
- Bräuer-Burchardt, C.; Heinze, M.; Schmidt, I.; Kühmstedt, P.; Notni, G. Underwater 3D Surface Measurement Using Fringe Projection Based Scanning Devices. Sensors 2016, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Chen, X.; Xi, J.; Yu, C.; Zhao, B. Development and Verification of a Novel Robot-Integrated Fringe Projection 3D Scanning System for Large-Scale Metrology. Sensors 2017, 17, 2886. [Google Scholar] [CrossRef] [Green Version]
- Liberadzki, P.; Adamczyk, M.; Witkowski, M.; Sitnik, R. Structured-Light-Based System for Shape Measurement of the Human Body in Motion. Sensors 2018, 18, 2827. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Liu, X.; Li, Z.; Zhong, K.; Han, L.; He, W.; Gan, W.; Xi, G.; Wang, C.; Shi, Y. Development and Verification of a Novel Robot-Integrated Fringe Projection 3D Scanning System for Large-Scale Metrology. Sensors 2019, 19, 668. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Yu, S.; Yu, X. 3D Measurement of Human Chest and Abdomen Surface Based on 3D Fourier Transform and Time Phase Unwrapping. Sensors 2020, 20, 1091. [Google Scholar] [CrossRef] [Green Version]
- Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt. Lasers Eng. 2018, 109, 2018. [Google Scholar] [CrossRef]
- Zhang, S. Absolute phase retrieval methods for digital fringe projection profilometry: A review. Opt. Lasers Eng. 2018, 107, 28–37. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, P.; Su, X.; You, Z. Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination. Opt. Express 2016, 25, 28549–28560. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Liu, X.; Peng, X.; Yin, Y.; Li, A.; Wu, J.; Gao, B.Z. Structured light field 3D imaging. Opt. Express 2016, 24, 20324–20334. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, D.; Hu, H.; Liu, L. Fast 3D Surface Measurement with Wrapped Phase and Pseudorandom Image. Sensors 2019, 19, 4185. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Bu, J.; Zhang, D. Lens distortion elimination for improving measurement accuracy of fringe projection profilometry. Opt. Lasers Eng. 2016, 86, 53–64. [Google Scholar] [CrossRef]
- Li, B.; An, Y.; Zhang, S. Single-shot absolute 3D shape measurement with Fourier transform profilometry. Appl. Opt. 2016, 55, 5219–5225. [Google Scholar] [CrossRef]
- Zuo, C.; Tao, T.; Feng, S.; Huang, L.; Asundi, A.; Chen, Q. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Opt. Lasers Eng. 2018, 102, 70–91. [Google Scholar] [CrossRef] [Green Version]
- Gorthi, S.; Rastogi, P. Fringe projection techniques: Whither we are? Opt. Lasers Eng. 2010, 48, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Intentional Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI); Springer: Cham, Switzerland, 2015. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Eigen, D.; Puhrsch, C.; Fergus, R. Depth Map Prediction from a Single Image Using a Multi-scale Deep Network. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–11 December 2014. [Google Scholar]
- Liu, F.; Shen, C.; Lin, G. Deep convolutional neural fields for depth estimation from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Choy, C.B.; Xu, D.; Gwak, J.; Chen, K.; Savarese, S. 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Dou, P.; Shah, S.; Kakadiaris, I. End-to-end 3D face reconstruction with deep neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Paschalidou, D.; Ulusoy, A.; Schmitt, C.; Gool, L.; Geiger, A. RayNet: Learning Volumetric 3D Reconstruction With Ray Potentials. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Feng, S.; Zuo, C.; Yin, W.; Gu, G.; Chen, Q. Micro deep learning profilometry for high-speed 3D surface imaging. Opt. Lasers Eng. 2019, 121, 416–427. [Google Scholar] [CrossRef]
- Feng, S.; Chen, Q.; Gu, G.; Tao, T.; Zhang, L.; Hu, Y.; Yin, W.; Zuo, C. Fringe pattern analysis using deep learning. Adv. Photonics 2019, 1, 025001. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Chen, Q.; Feng, S.; Tao, T.; Huang, L.; Trusiak, M.; Asundi, A.; Zuo, C. Temporal phase unwrapping using deep learning. Sci. Rep. 2019, 9, 20175. [Google Scholar] [CrossRef] [PubMed]
- Jeught, S.; Dirckx, J. Deep neural networks for single shot structured light profilometry. Opt. Express 2019, 27, 17091–17101. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Tang, C.; Xu, M.; Lei, Z. Batch denoising of ESPI fringe patterns based on convolutional neural network. Appl. Opt. 2019, 58, 3338–3346. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhu, X.; Wang, H.; Song, L.; Guo, Q. Label enhanced and patch based deep learning for phase retrieval from single frame fringe pattern in fringe projection 3D measurement. Opt. Express 2019, 27, 28929–28943. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, X.; Zhang, Z.; Zuo, C.; Zhang, Y.; Zheng, D.; Han, J. Dynamic 3-D measurement based on fringe-to-fringe transformation using deep learning. Opt. Express 2020, 28, 9405–9418. [Google Scholar] [CrossRef] [PubMed]
- Stavroulakis, P.; Chen, S.; Delorme, C.; Bointon, P.; Tzimiropoulos, F.; Leach, R. Rapid tracking of extrinsic projector parameters in fringe projection using machine learning. Opt. Lasers Eng. 2019, 114, 7–14. [Google Scholar] [CrossRef]
- Ren, Z.; So, H.; Lam, E. Fringe Pattern Improvement and Super-Resolution Using Deep Learning in Digital Holography. IEEE Trans. Ind. 2019, 15, 6179–6186. [Google Scholar] [CrossRef]
- Yan, K.; Yu, Y.; Huang, C.; Sui, L.; Qian, K.; Asundi, A. Fringe pattern denoising based on deep learning. Opt. Commun. 2019, 437, 148–152. [Google Scholar] [CrossRef]
- Lin, B.; Fu, S.; Zhang, C.; Wang, F.; Xie, S.; Zhao, Z.; Li, Y. Optical fringe patterns filtering based on multi-stage convolution neural network. arXiv 2019, arXiv:1901.00361v1. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.; Rivera, M. Deep neural network for fringe pattern filtering and normalization. arXiv 2019, arXiv:1906.06224v1. [Google Scholar]
- Hoang, T.; Pan, B.; Nguyen, D.; Wang, Z. Generic gamma correction for accuracy enhancement in fringe-projection profilometry. Opt. Lett. 2010, 25, 1992–1994. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Wang, Z.; Quisberth, J. Accuracy Comparison of Fringe Projection Technique and 3D Digital Image Correlation Technique. In Proceedings of the Conference Proceedings of the Society for Experimental Mechanics Series (SEM), Costa Mesa, CA, USA, 8–11 June 2015. [Google Scholar]
- Nguyen, H.; Nguyen, D.; Wang, Z.; Kieu, H.; Le, M. Real-time, high-accuracy 3D imaging and shape measurement. Appl. Opt. 2015, 54, A9–A17. [Google Scholar] [CrossRef]
- Nguyen, H.; Dunne, N.; Li, H.; Wang, Y.; Wang, Z. Real-time 3D shape measurement using 3LCD projection and deep machine learning. Appl. Opt. 2019, 58, 7100–7109. [Google Scholar] [CrossRef] [PubMed]
- Le, H.; Nguyen, H.; Wang, Z.; Opfermann, J.; Leonard, S.; Krieger, A.; Kang, J. Demonstration of a laparoscopic structured-illumination three-dimensional imaging system for guiding reconstructive bowel anastomosis. J. Biomed. Opt. 2018, 23, 056009. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Nguyen, D.; Barnes, J. Some practical considerations in fringe projection profilometry. Opt. Lasers Eng. 2010, 48, 218–225. [Google Scholar] [CrossRef]
- Du, H.; Wang, Z. Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system. Opt. Lett. 2007, 32, 2438–2440. [Google Scholar] [CrossRef]
- Vo, M.; Wang, Z.; Hoang, T.; Nguyen, D. Flexible calibration technique for fringe-projection-based three-dimensional imaging. Opt. Lett. 2010, 35, 3192–3194. [Google Scholar] [CrossRef]
- Vo, M.; Wang, Z.; Pan, B.; Pan, T. Hyper-accurate flexible calibration technique for fringe-projection-based three-dimensional imaging. Opt. Express 2012, 20, 16926–16941. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Single-Shot 3D Shape Reconstruction Data Sets. Available online: https://figshare.com/articles/Single-Shot_Fringe_Projection_Dataset/7636697 (accessed on 22 June 2020).
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Wang, Z.; Kieu, H.; Nguyen, H.; Le, M. Digital image correlation in experimental mechanics and image registration in computer vision: Similarities, differences and complements. Opt. Lasers Eng. 2015, 65, 18–27. [Google Scholar] [CrossRef]
- Nguyen, H.; Wang, Z.; Jones, P.; Zhao, B. 3D shape, deformation, and vibration measurements using infrared Kinect sensors and digital image correlation. Appl. Opt. 2017, 56, 9030–9037. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Kieu, H.; Wang, Z.; Le, H. Three-dimensional facial digitization using advanced digital image correlation. Appl. Opt. 2018, 57, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Amazon Web Services. Available online: https://aws.amazon.com (accessed on 22 June 2020).
- Google Cloud: Cloud Computing Services. Available online: https://cloud.google.com (accessed on 22 June 2020).
- Microsoft Azure: Cloud Computing Services. Available online: https://azure.microsoft.com/en-us (accessed on 22 June 2020).
- IBM Cloud. Available online: https://www.ibm.com/cloud (accessed on 22 June 2020).
Model | FCN | AEN | UNet | |
---|---|---|---|---|
Training Time | 7 h | 5 h | 6 h | |
Training | MRE | 1.28 | 8.10 | 7.01 |
RMSE (mm) | 1.47 | 0.80 | 0.71 | |
Validation | MRE | 1.78 | 1.65 | 1.47 |
RMSE (mm) | 1.73 | 1.43 | 1.27 | |
>Test | MRE | 2.49 | 2.32 | 2.08 |
RMSE (mm) | 2.03 | 1.85 | 1.62 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.; Wang, Y.; Wang, Z. Single-Shot 3D Shape Reconstruction Using Structured Light and Deep Convolutional Neural Networks. Sensors 2020, 20, 3718. https://doi.org/10.3390/s20133718
Nguyen H, Wang Y, Wang Z. Single-Shot 3D Shape Reconstruction Using Structured Light and Deep Convolutional Neural Networks. Sensors. 2020; 20(13):3718. https://doi.org/10.3390/s20133718
Chicago/Turabian StyleNguyen, Hieu, Yuzeng Wang, and Zhaoyang Wang. 2020. "Single-Shot 3D Shape Reconstruction Using Structured Light and Deep Convolutional Neural Networks" Sensors 20, no. 13: 3718. https://doi.org/10.3390/s20133718