Piezoelectric Energy Harvesting from Suspension Structures with Piezoelectric Layers
Abstract
:1. Introduction
2. Design and Simulation of the Generator
3. Experiments and Discussion
3.1. Prototype Fabrication and Experimental Setup
3.2. Experimental Results and Discussion
3.2.1. Voltage Responses from Frequency Sweeps and Voltages at Resonance
3.2.2. Impedance Matching and Output Power
3.2.3. Charging Performance
4. Conclusions
- (1)
- Under a force loading of 120 g and an excitation acceleration of 0.2 g at a resonant frequency of 25.2 Hz, the generator can produce a 1.7 mW peak power output with an impedance-matching of 610 kΩ, and the instantaneous peak–peak power density is 3.82 mW/cm3;
- (2)
- The capacitor charging performance of the generator is also excellent under the series condition. For a 4.7 μF capacitor, the voltage is charged to 25 V in 30 s and limited at 32 V in 80 s.
Author Contributions
Funding
Conflicts of Interest
References
- Cook-Chennault, K.A.; Thambi, N.; Sastry, A.M. Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 2008, 17, 043001. [Google Scholar] [CrossRef] [Green Version]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 2004, 45, 1597–1615. [Google Scholar] [CrossRef]
- Bryden, I.; Grinsted, T.; Melville, G.J.A.O.R. Assessing the potential of a simple tidal channel to deliver useful energy. Appl. Ocean Res. 2004, 26, 198–204. [Google Scholar] [CrossRef]
- Paish, O. Small hydro power: Technology and current status. Renew. Sustain. Energy Rev. 2002, 6, 537–556. [Google Scholar] [CrossRef]
- Li, Z.; Yan, Z.; Luo, J.; Yalng, Z. Performance comparison of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration. Energy Convers. Manag. 2019, 179, 132–140. [Google Scholar] [CrossRef]
- Li, Z.; Naguib, H.E. Effect of revolute joint mechanism on the performance of cantilever piezoelectric energy harvester. Smart Mater. Struct. 2019, 28, 085043. [Google Scholar] [CrossRef]
- Yang, Z.; Zu, J.; Luo, J.; Peng, Y. Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester. J. Intell. Mater. Syst. Struct. 2017, 28, 357–366. [Google Scholar] [CrossRef]
- Yang, Z. High-performance Nonlinear Piezoelectric Energy Harvesting in Compressive Mode. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2016. [Google Scholar]
- Li, Z.; Zu, J.; Yang, Z. Introducing hinge mechanisms to one compressive-mode piezoelectric energy harvester. J. Renew. Sustain. Energy 2018, 10, 034704. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Naguib, H.E.; Zu, J. Design and studies on a low-frequency truss-based compressive-mode piezoelectric energy harvester. IEEE/ASME Trans. Mechatron. 2018, 23, 2849–2858. [Google Scholar] [CrossRef]
- Cao, J.; Syta, A.; Litak, G.; Zhou, S.; Inman, D.J.; Chen, Y.Q. Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. Eur. Phys. J. Plus 2015, 130, 103. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Wang, W.; Zhou, S.; Inman, D.J.; Lin, J. Nonlinear time-varying potential bistable energy harvesting from human motion. Appl. Phys. Lett. 2015, 107, 143904. [Google Scholar] [CrossRef]
- Xu, J.; Tang, J. Modeling and analysis of piezoelectric cantilever-pendulum system for multi-directional energy harvesting. J. Intell. Mater. Syst. Struct. 2017, 28, 323–338. [Google Scholar] [CrossRef]
- Xu, J.; Tang, J. Piezoelectric cantilever-pendulum for multi-directional energy harvesting with internal resonance. In Active and Passive Smart Structures and Integrated Systems 2015; International Society for Optics and Photonics: Bellingham, WA, USA, 2015. [Google Scholar]
- Liu, W.; Badel, A.; Formosa, F.; Wu, Y.; Bencheikh, N.; Agbossou, A. A wideband integrated piezoelectric bistable generator: Experimental performance evaluation and potential for real environmental vibrations. J. Intell. Mater. Syst. Struct. 2015, 26, 872–877. [Google Scholar] [CrossRef]
- Liu, W.; Formosa, F.; Badel, A.; Wu, Y.; Agbossou, A. Self-powered nonlinear harvesting circuit with a mechanical switch structure for a bistable generator with stoppers. Sens. Actuators A Phys. 2014, 216, 106–115. [Google Scholar] [CrossRef]
- Hoffmann, D.; Folkmer, B.; Manoli, Y. Analysis and characterization of triangular electrode structures for electrostatic energy harvesting. J. Micromechanics Microengineering 2011, 21, 104002. [Google Scholar] [CrossRef]
- Kwon, S.-D.; Park, J.; Law, K. Electromagnetic energy harvester with repulsively stacked multilayer magnets for low frequency vibrations. Smart Mater. Struct. 2013, 22, 055007. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Kim, E.S. Vibration energy harvesting based on magnet and coil arrays for watt-level handheld power source. Proc. IEEE 2014, 102, 1747–1761. [Google Scholar] [CrossRef]
- Foisal, A.R.M.; Hong, C.; Chung, G. Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens. Actuators A Phys. 2012, 182, 106–113. [Google Scholar] [CrossRef]
- Toyabur, R.; Salauddin, M.; Cho, H.; Park, J.Y. A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy Convers. Manag. 2018, 168, 454–466. [Google Scholar] [CrossRef]
- Yang, Z.; Tan, Y.; Zu, J. A multi-impact frequency up-converted magnetostrictive transducer for harvesting energy from finger tapping. Int. J. Mech. Sci. 2017, 126, 235–241. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, F.G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009. [Google Scholar] [CrossRef]
- Ahmed, A.; Saadatnia, Z.; Hassan, I.; Zi, Y.; Xi, Y.; He, X.; Zu, J.; Wang, Z.L. Self-powered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy. Adv. Energy Mater. 2017, 7, 1601705. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Zhu, G.; Wen, X.; Bai, P.; Su, Y.; Lin, Y.; Wang, Z.L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res. 2013, 6, 880–886. [Google Scholar] [CrossRef]
- Huiming, X.; Gangjin, C.; Xumin, C.; Zhi, C. A flexible electret membrane with persistent electrostatic effect and resistance to harsh environment for energy harvesting. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Priya, S.; Inman, D.J. Energy Harvesting Technologies; Springer: Berlin/Heidelberg, Germany, 2009; Volume 21. [Google Scholar]
- Li, Z.; Saadatnia, Z.; Yang, Z.; Naguib, H.E. A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting. Energy Convers. Manag. 2018, 174, 188–197. [Google Scholar] [CrossRef]
- Zhang, X.; Zuo, M.; Yang, W.; Wan, X. A Tri-Stable Piezoelectric Vibration Energy Harvester for Composite Shape Beam: Nonlinear Modeling and Analysis. Sensors 2020, 20, 1370. [Google Scholar] [CrossRef] [Green Version]
- Qian, F.; Xu, T.-B. A distributed parameter model for the piezoelectric stack harvester subjected to general periodic and random excitations. Eng. Struct. 2018, 173, 191–202. [Google Scholar] [CrossRef]
- Feenstra, J.; Granstrom, J.; Sodano, H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mech. Syst. Signal Process. 2008, 22, 721–734. [Google Scholar] [CrossRef]
- Su, W.-J.; Lin, J.-H.; Li, W.-C. Analysis of a Cantilevered Piezoelectric Energy Harvester in Different Orientations for Rotational Motion. Sensors 2020, 20, 1206. [Google Scholar] [CrossRef] [Green Version]
- Gljušćić, P.; Zelenika, S.; Blažević, D.; Kamenar, E. Kinetic Energy Harvesting for Wearable Medical Sensors. Sensors 2019, 19, 4922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrowati, W.; Guntur, H.L.; Sutantra, I.N. Design, modeling and analysis of implementing a multilayer piezoelectric vibration energy harvesting mechanism in the vehicle suspension. Engineering 2012, 4, 728–738. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Erturk, A.J.S.; Physical, A.A. Deterministic and band-limited stochastic energy harvesting from uniaxial excitation of a multilayer piezoelectric stack. Sens. Actuators A Phys. 2014, 214, 58–65. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Z.; Xiang, H.-J.; Song, G. Modeling on energy harvesting from a railway system using piezoelectric transducers. Smart Mater. Struct. 2015, 24, 105017. [Google Scholar] [CrossRef]
- Panda, P.K.; Sahoo, B.; Chandraiah, M.; Raghavan, S.; Manoj, B.; Ramakrishna, J.; Kiran, P. Piezoelectric energy harvesting using PZT bimorphs and multilayered stacks. J. Electron. Mater. 2015, 44, 4349–4353. [Google Scholar] [CrossRef]
- Koszewnik, A.J.S. Analytical Modeling and Experimental Validation of an Energy Harvesting System for the Smart Plate with an Integrated Piezo-Harvester. Sensors 2019, 19, 812. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Yan, B.; Inman, D.J. A novel nonlinear piezoelectric energy harvesting system based on linear-element coupling: Design, modeling and dynamic analysis. Sensors 2018, 18, 1492. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, M. Synchronicity and pure bending of bimorphs: A new approach to piezoelectric energy harvesting. Smart Mater. Struct. 2018, 27, 085027. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Hu, Y.; Wang, Q.-M. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2104–2108. [Google Scholar]
- El-Sabbagh, A.; Baz, A. Maximization of the harvested power from piezoelectric bimorphs with multiple electrodes under dynamic excitation. Finite Elem. Anal. Des. 2011, 47, 1232–1241. [Google Scholar] [CrossRef]
- He, X.; Teh, K.S.; Li, S.; Dong, L.; Jiang, S. Modeling and experimental verification of an impact-based piezoelectric vibration energy harvester with a rolling proof mass. Sens. Actuators A Phys. 2017, 259, 171–179. [Google Scholar] [CrossRef]
- Abramovich, H.; Har-nes, I.J.M. Analysis and Experimental Validation of a Piezoelectric Harvester with Enhanced Frequency Bandwidth. Materials 2018, 11, 1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Li, J.; Wang, Y.; Wang, Y.; Li, Y. Parametric Prediction Models of Harvesting Electric Energy Density for Piezoelectric Transducers. J. Vib. Eng. Technol. 2019, 7, 389–398. [Google Scholar] [CrossRef]
- Pozzi, M. Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester. Smart Mater. Struct. 2016, 25, 045008. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Erturk, A. Electroelastic modeling and experimental validations of piezoelectric energy harvesting from broadband random vibrations of cantilevered bimorphs. Smart Mater. Struct. 2012, 22, 015002. [Google Scholar] [CrossRef]
- Pozzi, M.; Aung, M.S.H.; Zhu, M.; Jones, R.; Goulermas, J.Y. The pizzicato knee-joint energy harvester: Characterization with biomechanical data and the effect of backpack load. Smart Mater. Struct. 2012, 21, 075023. [Google Scholar] [CrossRef]
- Bonello, P.; Rafique, S.; Shuttleworth, R. A theoretical study of a smart electromechanical tuned mass damper beam device. Smart Mater. Struct. 2012, 21, 125004. [Google Scholar] [CrossRef]
- Zhang, H.; Ahmadi, M. Resonance tuning of a multi-piezoelectric bimorph beams energy harvester connected by springs. Ferroelectrics 2014, 460, 34–48. [Google Scholar] [CrossRef]
- Hosseini, R.; Hamedi, M. Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J. Micromechanics Microengineering 2015, 25, 125008. [Google Scholar] [CrossRef]
- Cottone, F.; Basset, P.; Vocca, H.; Gammaitoni, L.; Bourouina, T. Bistable electromagnetic generator based on buckled beams for vibration energy harvesting. J. Intell. Mater. Syst. Struct. 2014, 25, 1484–1495. [Google Scholar] [CrossRef]
- Priya, S.; Chen, C.-T.; Fye, D.; Zahnd, J. Piezoelectric windmill: A novel solution to remote sensing. Jpn. J. Appl. Phys. 2004, 44, L104. [Google Scholar] [CrossRef]
- Pozzi, M. Impulse excitation of piezoelectric bimorphs for energy harvesting: A dimensionless model. Smart Mater. Struct. 2014, 23, 045044. [Google Scholar] [CrossRef] [Green Version]
- Benasciutti, D.; Moro, L.; Zelenika, S.; Brusa, E. Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst. Technol. 2010, 16, 657–668. [Google Scholar] [CrossRef]
- Chandrasekharan, N.; Thompson, L.L. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures. Smart Mater. Struct. 2016, 25, 045019. [Google Scholar] [CrossRef]
- Aktakka, E.E.; Kim, H.; Najafi, K. Energy scavenging from insect flight. J. Micromech. Microeng. 2011, 21, 095016. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Chen, H.; Liang, T. An analytical investigation of free vibration for a thin-walled regular polygonal prismatic shell with simply supported odd/even number of sides. J. Sound Vib. 2005, 284, 520–530. [Google Scholar] [CrossRef]
Description | Value | |
---|---|---|
Piezoelectric plate (YH-52) | Dimensions (mm) | 9 × 9 × 0.35 |
Density (kg/m3) | 7450 | |
Piezoelectric constant d31 (10−12 C/N) | −210 | |
Young’s modulus (GPa) | 13 | |
Capacitance (nF) | 10.2 | |
Amount | 16 | |
Workload | Load 1 (g) | 120 |
Leaf spring | Load 2 (g) | 170 |
Load 3 (g) | 220 | |
Height (mm) | 34 | |
Width (mm) | 61 | |
Thickness (mm) | 0.4 | |
Intersection angle | 150° | |
Material | Spring steel |
Piezoelectric Layer Number | Current Voltage (V) | Power (μW) |
---|---|---|
1 | 19 | 591.8 |
2 | 2 | 6.6 |
3 | 5.2 | 44.3 |
4 | 4.8 | 37.8 |
5 | 8.2 | 110.2 |
6 | 2.2 | 7.9 |
7 | 4 | 26.2 |
8 | 7 | 80.3 |
9 | 17.2 | 485 |
10 | 2 | 6.6 |
11 | 7.2 | 85 |
12 | 6.4 | 67.1 |
13 | 6.2 | 63 |
14 | 2 | 6.6 |
15 | 4 | 26.2 |
16 | 7.4 | 89.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Xia, Y.; Pu, H.; Sun, Y.; Ding, J.; Luo, J.; Xie, S.; Peng, Y.; Zhang, Q.; Li, Z. Piezoelectric Energy Harvesting from Suspension Structures with Piezoelectric Layers. Sensors 2020, 20, 3755. https://doi.org/10.3390/s20133755
Wang M, Xia Y, Pu H, Sun Y, Ding J, Luo J, Xie S, Peng Y, Zhang Q, Li Z. Piezoelectric Energy Harvesting from Suspension Structures with Piezoelectric Layers. Sensors. 2020; 20(13):3755. https://doi.org/10.3390/s20133755
Chicago/Turabian StyleWang, Min, Yiming Xia, Huayan Pu, Yi Sun, Jiheng Ding, Jun Luo, Shaorong Xie, Yan Peng, Quan Zhang, and Zhongjie Li. 2020. "Piezoelectric Energy Harvesting from Suspension Structures with Piezoelectric Layers" Sensors 20, no. 13: 3755. https://doi.org/10.3390/s20133755
APA StyleWang, M., Xia, Y., Pu, H., Sun, Y., Ding, J., Luo, J., Xie, S., Peng, Y., Zhang, Q., & Li, Z. (2020). Piezoelectric Energy Harvesting from Suspension Structures with Piezoelectric Layers. Sensors, 20(13), 3755. https://doi.org/10.3390/s20133755