Information Value-Based Fault Diagnosis of Train Door System under Multiple Operating Conditions
Abstract
:1. Introduction
2. Bayesian Network
2.1. Basis of Bayesian Network
2.2. Structure Learning and Parameter Learning for Bayesian Network
Algorithm 1: The K2 algorithm |
1: procedure K2; |
2: {Input: A set of n nodes, an ordering on the nodes, an upper bound u on the |
3: number of parents a node may have, and a database D containing m cases.} |
4: {Output: For each node, a printout of the parents of the node.} |
5: for i := 1 to n do |
6: |
7: Pold := g); |
8: OKToProceed true |
9: while OKToProceed and || < u do |
10: let z be the node in Pred(xi) - that maximizes g {z}); |
11: Pnew g {z}); |
12: if Pnew > Pold then |
13: Pold Pnew; |
14: |
15: else OKToProceed false; |
16: end {while}; |
17: write (‘Node:’, , ‘Parents of this node:’, ) |
18: end {for}; |
19: end {K2}; |
3. Information Value
4. Application: Train Door System Fault Diagnosis
4.1. Data Acquisition and Preprocessing
4.2. Bayesian Network Model Construction
4.3. Fault Diagnosis Based on Information Value
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.; Wu, F.; Zhao, W.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 2014, 42, 314–334. [Google Scholar] [CrossRef]
- Pecht, M.; Jaai, R. A prognostics and health management roadmap for information and electronics-rich systems. Microelectron Reliab. 2010, 50, 317–323. [Google Scholar] [CrossRef]
- Xia, T.; Dong, Y.; Xiao, L.; Du, S.; Pan, E.; Xi, L. Recent advances in prognostics and health management for advanced manufacturing paradigms. Reliab. Eng. Syst. Saf. 2018, 178, 255–268. [Google Scholar] [CrossRef]
- Zerhouni, N.; Atamuradov, V.; Medjaher, K.; Dersin, P.; Lamoureux, B. Prognostics and Health Management for Maintenance Practitioners-Review, Implementation and Tools Evaluation. Artic. Int. J. Progn. Heal. Manag. 2017, 8, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Isermann, R. Model-based fault-detection and diagnosis - Status and applications. Annu. Rev. Control. 2005, 29, 71–85. [Google Scholar] [CrossRef]
- Introduction to Data-Driven Methodologies for Prognostics and Health Management. Available online: https://link.springer.com/chapter/10.1007/978-3-319-55852-3_2 (accessed on 15 July 2020).
- Kim, S.; Choi, J.H. Convolutional neural network for gear fault diagnosis based on signal segmentation approach. Struct. Health Monit. 2018, 18, 1401–1415. [Google Scholar] [CrossRef]
- Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional Neural Network Based Fault Detection for Rotating Machinery. J. Sound Vib. 2016, 377, 331–345. [Google Scholar] [CrossRef]
- Li, C.; Sanchez, R.V.; Zurita, G.; Cerrada, M.; Cabrera, D.; Vásquez, R.E. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Signal. Process. 2016, 76–77, 283–293. [Google Scholar] [CrossRef]
- Long, J.; Zhang, S.; Li, C. Evolving Deep Echo State Networks for Intelligent Fault Diagnosis. IEEE Trans. Ind. Inf. 2020, 16, 4928–4937. [Google Scholar] [CrossRef]
- Sobie, C.; Freitas, C.; Nicolai, M. Simulation-driven machine learning: Bearing fault classification. Mech. Syst. Signal Process. 2018, 99, 403–419. [Google Scholar] [CrossRef]
- Kim, S.; Kim, N.H.; Choi, J.-H. Prediction of remaining useful life by data augmentation technique based on dynamic time warping. Mech. Syst. Signal Process. 2020, 136, 106486. [Google Scholar] [CrossRef]
- Turgis, F.; Copin, R.; Loslever, P.; Cauffriez, L.; Caouder, N. Design of a testing bench for simulating tightened-up operating conditions of train’s passenger access. In Proceeding of the European Safety and Reliability Conference (ESREL), London, UK, 11 April 2009; pp. 21–23. [Google Scholar]
- Cauffriez, L.; Grondel, S.; Loslever, P.; Aubrun, C. Bond Graph modeling for fault detection and isolation of a train door mechatronic system. Control Eng. Pr. 2016, 49, 212–224. [Google Scholar] [CrossRef]
- Lin, S.; Jia, L.; Qin, Y.; Yu, B.; Wang, Y. Research on Urban Rail Train Passenger Door System Fault Diagnosis Using PCA and Rough Set. Open Mech. Eng. J. 2014, 8, 340–348. [Google Scholar]
- Dassanayake, H.; Roberts, C.; Goodman, C.J.; Tobias, A.M. Use of parameter estimation for the detection and diagnosis of faults on electric train door systems. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 2009, 223, 271–278. [Google Scholar] [CrossRef]
- Boussif, A.; Ghazel, M. Model-Based Monitoring of a Train Passenger Access System. IEEE Access. 2018, 6, 41619–41632. [Google Scholar] [CrossRef]
- Yan, J.; Lee, J. Degradation Assessment and Fault Modes Classification Using Logistic Regression. J. Manuf. Sci. Eng. 2005, 127, 912–914. [Google Scholar] [CrossRef]
- Cai, B.; Huang, L.; Xie, M. Bayesian Networks in Fault Diagnosis. IEEE Trans. Ind Inf. 2017, 13, 2227–2240. [Google Scholar] [CrossRef]
- Yang, L.; Lee, J. Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems. Robot. Comput. Integr. Manuf. 2012, 28, 66–74. [Google Scholar] [CrossRef]
- Xu, B.G. Intelligent fault inference for rotating flexible rotors using Bayesian belief network. Expert Syst. Appl. 2012, 39, 816–822. [Google Scholar] [CrossRef]
- Cai, B.; Zhao, Y.; Liu, H.; Xie, M. A data-driven fault diagnosis methodology in three-phase inverters for PMSM drive systems. IEEE Trans. Power Electron. 2017, 32, 5590–5600. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, F.; Wang, Z. Fault diagnosis system of bridge crane equipment based on fault tree and Bayesian network. Int. J. Adv. Manuf. Technol. 2019, 105, 3605–3618. [Google Scholar] [CrossRef]
- Zhang, J. Improved on-line process fault diagnosis through information fusion in multiple neural networks. Comput. Chem. Eng. 2006, 30, 558–571. [Google Scholar] [CrossRef]
- Niu, G.; Han, T.; Yang, B.S.; Tan, A.C.C. Multi-agent decision fusion for motor fault diagnosis. Mech. Syst. Signal Process. 2007, 21, 1285–1299. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Xue, F. Jet engine gas path fault diagnosis using dynamic fusion of multiple classifiers. In Proceedings of the International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008; pp. 1585–1591. [Google Scholar] [CrossRef]
- Korb, K.B.; Nicholson, A.E. Bayesian Artificial Intelligence, 2nd ed.; CRC Press: New York, NY, USA, 2010; pp. 29–30. [Google Scholar] [CrossRef]
- Learning Bayesian Network Model Structure from Data. Available online: https://apps.dtic.mil/sti/pdfs/ADA461103.pdf (accessed on 15 July 2020).
- Cooper, G.F.; Herskovits, E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Mach. Learn. 1992, 9, 309–347. [Google Scholar] [CrossRef]
- Tabar, V.R. A Simple Node Ordering Method for the K2 Algorithm based on the Factor Analysis. In Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), Porto, Portugal, 1 January 2017; pp. 273–280. [Google Scholar] [CrossRef]
- Larranaga, P. Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 912–926. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Fenton, N.; Neil, M. Bayesian network approach to multinomial parameter learning using data and expert judgments. Int. J. Approx Reason. 2014, 55, 1252–1268. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Y.; Zhang, R. Fault troubleshooting using bayesian network and multicriteria decision analysis. Adv. Mech. Eng. 2014, 6, 282013. [Google Scholar] [CrossRef]
- Yap, B.W.; Ong, S.H.; Husain, N.H.M. Using data mining to improve assessment of credit worthiness via credit scoring models. Expert Syst. Appl. 2011, 38, 13274–13283. [Google Scholar] [CrossRef]
- Lapira, E.; Brisset, D.; Ardakani, H.D.; Siegel, D.; Lee, J. Wind turbine performance assessment using multi-regime modeling approach. Renew Energy. 2012, 45, 86–95. [Google Scholar] [CrossRef]
- Baraldi, P.; Maio, F.D.; Rigamonti, M.; Zio, E.; Seraoui, R. Clustering for unsupervised fault diagnosis in nuclear turbine shut-down transients. Mech. Syst. Signal Process. 2015, 58, 160–178. [Google Scholar] [CrossRef]
Information Value (IV) | Attribute Predictiveness |
---|---|
Less than 0.1 | Weak |
0.1 to 0.3 | Medium |
0.3 to 0.5 | Strong |
>0.5 | Over-predicting |
Velocity | RMS | Max | Mean | Variance |
---|---|---|---|---|
1 | ||||
2 | ||||
3 |
Max. | Mean | Var | Door Condition | ||
---|---|---|---|---|---|
Normal | Bearing Fault | Roller Fault | |||
0 | 0 | 0 | 0.0333 | 0.2000 | 0.7667 |
0 | 0 | 1 | 0 | 0.7258 | 0.2742 |
0 | 1 | 0 | 0.2727 | 0.7273 | 0 |
0 | 1 | 1 | 0.1923 | 0.8077 | 0 |
1 | 0 | 0 | 0.8333 | 0.1667 | 0 |
1 | 0 | 1 | 0.2857 | 0.7143 | 0 |
1 | 1 | 0 | 0.3333 | 0.6667 | 0 |
1 | 1 | 1 | 0.9823 | 0.0177 | 0 |
Vel. | RMS | Max | Door Condition | ||
---|---|---|---|---|---|
Normal | Bearing Fault | Roller Fault | |||
1 | 0 | 0 | 0 | 0.0222 | 0.9778 |
1 | 0 | 1 | 0.1190 | 0.8810 | 0 |
1 | 1 | 0 | 1 | 0 | 0 |
1 | 1 | 1 | 1 | 0 | 0 |
2 | 0 | 0 | 0.0435 | 0 | 0.9565 |
2 | 0 | 1 | 0.3750 | 0.6250 | 0 |
2 | 1 | 0 | 0.7500 | 0.2500 | 0 |
2 | 1 | 1 | 0.5294 | 0.4706 | 0 |
3 | 0 | 0 | 0 | 0.1579 | 0.8421 |
3 | 0 | 1 | 0.0625 | 0.1875 | 0.7500 |
3 | 1 | 0 | 0.2857 | 0.7143 | 0 |
3 | 1 | 1 | 0.6308 | 0.3692 | 0 |
Vel. | Max | Mean | Var | Door Condition | ||
---|---|---|---|---|---|---|
Normal | Bearing Fault | Roller Fault | ||||
1 | 1 | 0 | 1 | 0.2857 | 0.7143 | 0 |
2 | 0 | 1 | 0 | 0.2727 | 0.7273 | 0 |
3 | 1 | 0 | 0 | 0.8333 | 0.1667 | 0 |
Vel | Max | Mean | Var | WOE | IV | ||
---|---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | 0.2000 | 0.3571 | −0.5798 | 0.0911 |
2 | 0 | 1 | 0 | 0.3000 | 0.5714 | −0.6444 | 0.1749 |
3 | 1 | 0 | 0 | 0.5000 | 0.0714 | 1.9459 | 0.8340 |
Operation | Vel | IV | Door Condition | ||
---|---|---|---|---|---|
Normal | Bearing Fault | Roller Fault | |||
Open | 1 | 0.4987 | 0.2727 | 0.7273 | 0 |
Open | 2 | 0.0240 | 0.0333 | 0.2000 | 0.7667 |
Open | 3 | 0.0240 | 0.0333 | 0.2000 | 0.7667 |
Close | 1 | 0.6318 | 0.1190 | 0.8810 | 0 |
Close | 2 | 0.0231 | 0.5297 | 0.4706 | 0 |
Close | 3 | 0.1600 | 0.6308 | 0.3692 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, N.H.; Choi, J.-H. Information Value-Based Fault Diagnosis of Train Door System under Multiple Operating Conditions. Sensors 2020, 20, 3952. https://doi.org/10.3390/s20143952
Kim S, Kim NH, Choi J-H. Information Value-Based Fault Diagnosis of Train Door System under Multiple Operating Conditions. Sensors. 2020; 20(14):3952. https://doi.org/10.3390/s20143952
Chicago/Turabian StyleKim, Seokgoo, Nam Ho Kim, and Joo-Ho Choi. 2020. "Information Value-Based Fault Diagnosis of Train Door System under Multiple Operating Conditions" Sensors 20, no. 14: 3952. https://doi.org/10.3390/s20143952