Impacts of Residual Stress on Micro Vibratory Platform Used for Inertial Sensor Calibration
Abstract
:1. Introduction
2. Platform Test
3. Investigation of the Abnormal Phenomenon
3.1. Influence of Residual Stress
3.2. Modeling PZT Hysteresis
3.3. Residual Stress vs. PZT Hysteresis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Olaf, D.; Georg, D.; Stefan, K. MEMS and FOG Technologies for Tactical and Navigation Grade Inertial Sensors—Recent Improvements and Comparison. Sensors 2017, 17, 567. [Google Scholar]
- Singh, S.P.N.; Waldron, K.J. Attitude Estimation for Dynamic Legged Locomotion Using Range and Inertial Sensors. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 1663–1668. [Google Scholar]
- He, J.; Zhou, W.; Yu, H. Structural Designing of a MEMS Capacitive Accelerometer for Low Temperature Coefficient and High Linearity. Sensors 2018, 18, 643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Peng, P.; Yu, H. Material Viscoelasticity-Induced Drift of Micro-Accelerometers. Materials 2017, 10, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Chen, Y.; Peng, B.; Yang, H. Air Damping Analysis in Comb Microaccelerometer. Adv. Mech. Eng. 2015, 6, 373172. [Google Scholar] [CrossRef]
- Dong, Y.; Zwahlen, P.; Nguyen, A.M. Ultra-high precision MEMS accelerometer. In Proceedings of the 2011 16th International IEEE Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS), Beijing, China, 5–9 June 2011. [Google Scholar]
- Emel’yantsev, G.I.; Dranitsyna, E.V.; Blazhnov, B.A. Test bed calibration of fog-based strapdown inertial measurement unit. Gyroscopy Navig. 2009, 3, 265–269. [Google Scholar] [CrossRef]
- Sundaram, S.; Tormen, M.; Timotijevic, B. Vibration and shock reliability of MEMS: Modeling and experimental validation. J. Micromech. Microeng. 2011, 21, 045022. [Google Scholar] [CrossRef]
- Link, T.; Simon, I.; Trachtler, M. A new self-test and self-calibration concept for micro-machined gyroscopes. In Proceedings of the TRANSDUCERS The 13th International IEEE Conference on Solid-State Sensors Actuators and Microsystems, Seoul, South Korea, 5–9 June 2005. [Google Scholar]
- Puers, R.; Reyntjens, S. RASTA real acceleration for self test accelerometer: A new concept for self-testing accelerometers. Sens. Actuators A 2002, 97–98, 359–368. [Google Scholar] [CrossRef]
- Aktakka, E.E.; Peterson, R.L.; Najafi, K. A 6-DOF piezoelectric micro vibratory stage based on multi-axis distributed-electrode excitation of PZT/Si unimorph T-beams. In Proceedings of the Solid-State Sensors, Actuators and Microsystems Transducers & Eurosensors XXVII: The 17th International Conference on IEEE, Barcelona, Spain, 16–20 June 2013. [Google Scholar]
- Aktakka, E.E.; Najafi, K. A six-axis micro platform for in situ calibration of MEMS inertial sensors. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016. [Google Scholar]
- Edamana, B.; Slavin, D.; Aktakka, E.E. Control and estimation with threshold sensing for Inertial Measurement Unit calibration using a piezoelectric microstage. In Proceedings of the American Control Conference IEEE, Portland, OR, USA, 4–6 June 2014. [Google Scholar]
- Zhou, W.; He, J.B.; Yu, H.J.; He, X.P. Analytical study of temperature coefficients of bulk MEMS capacitive accelerometers operating in closed-loop mode. Sens. Actuators A 2019, 290, 239–247. [Google Scholar] [CrossRef]
- Papaioannou, G.; Exarchos, M.N.; Theonas, V. Temperature study of the dielectric polarization effects of capacitive RF MEMS switches. IEEE Trans. Microw. Theory Tech. 2005, 53, 3467–3473. [Google Scholar] [CrossRef]
- Nadig, S.; Lal, A. In-Situ calibration Of MEMS inertial sensors for long-term reliability. In Proceedings of the 2018 IEEE International Reliability Physics Symposium, Burlingame, CA, USA, 11–15 March 2018. [Google Scholar]
- Du, Y.J.; Yang, T.T.; Gong, D.D. High Dynamic Micro Vibrator with Integrated Optical Displacement Detector for In-Situ Self-Calibration of MEMS Inertial Sensors. Sensors 2018, 18, 2055. [Google Scholar] [CrossRef] [Green Version]
- Yimnirun, R.; Wongsaenmai, S.; Wongmaneerung, R. Stress and temperature dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics. Phys. Scr. 2007, T129, 184–189. [Google Scholar] [CrossRef]
- Hues, S.M.; Draper, C.F.; Lee, K.P. Effect of PZT and PMN actuator hysteresis and creep on nanoindentation measurements using force microscopy. Rev. Sci. Instrum. 1994, 65, 1561–1565. [Google Scholar] [CrossRef]
- Zhan, H.X.; Zhou, W.; Ran, L.Q. A high-resolution Optical Displacement Detection Method for Piezoelectric Micro Vibratory Stage. IEEE Trans. Ind. Electron. 2020. [Google Scholar] [CrossRef]
- Hao, R.; Peng, B.; Yu, H. Improved MEMS piezoelectric vibratory stage with reduced off-axis error. J. Micro/Nanolithogr. MEMS MOEMS 2020, 19, 015002. [Google Scholar] [CrossRef]
- Hsueh, C.H. Modeling of Elastic Deformation of Multilayers Due to Residual Stress and External Bending. J. Appl. Phys. 2002, 91, 9652–9656. [Google Scholar] [CrossRef]
- Aktakka, E.E.; Peterson, R.L.; Najafi, K. A 3-DOF piezoelectric micro vibratory stage based on bulk-PZT/silicon crab-leg suspensions. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Taipei, Taiwan, 20–24 January 2013. [Google Scholar]
- Saxena, S.; Sharma, R.; Pant, B.D. Design and development of guided four beam cantilever type MEMS based piezoelectric energy harvester. Microsyst. Technol. 2016, 23, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.; Matova, S.; Elfrink, R. A piezoelectric vibration harvester based on clamped-guided beams. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Paris, France, 29 January–2 February 2012; pp. 1201–1204. [Google Scholar]
- Dutta, S.; Imran, M.; Pandey, A. Estimation of bending of micromachined gold cantilever due to residual stress. J. Mater. Sci. 2014, 25, 382–389. [Google Scholar] [CrossRef]
- Bao, M. Analysis and Design Principles of MEMS Devices; Elsevier: Amsterdam, The Netherlands, 2005; pp. 59–61. [Google Scholar]
- Weinberg, M.S. Working equations for piezoelectric actuators and sensors. J. Microelectromech. Syst. 1999, 8, 529–533. [Google Scholar] [CrossRef]
- Shepard, J.F.; Moses, P.J.; Trolier-McKinstry, S. The wafer flexure technique for the determination of the transverse piezoelectric coefficient (d31) of PZT thin films. Sens. Actuators A 1998, 71, 133–138. [Google Scholar] [CrossRef]
- Krejčí, P. The Preisach hysteresis model: Error bounds for numerical identification and inversion. Discrete Contin. Dyn. Syst. Ser. S 2012, 6, 101–119. [Google Scholar] [CrossRef]
- Janaideh, M.A.; Rakheja, S.; Su, C.Y. An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control. IEEE-ASME Trans. Mechatron. 2011, 16, 734–744. [Google Scholar] [CrossRef]
- Badrakhan, F. Dynamic analysis of yielding and hysteretic systems by polynomial approximation. J. Sound Vib. 1988, 125, 23–42. [Google Scholar] [CrossRef]
- Bashash, S.; Jalili, N. A Polynomial-Based Linear Mapping Strategy for Feedforward Compensation of Hysteresis in Piezoelectric Actuators. J. Dyn. Syst. Meas. Control 2008, 130, 031008. [Google Scholar] [CrossRef]
- Yimnirun, R.; Laosiritaworn, Y.; Wongsaenmai, S. Scaling behavior of dynamic hysteresis in soft lead zirconate titanate bulk ceramics. Appl. Phys. Lett. 2006, 89, 162901. [Google Scholar] [CrossRef]
Coefficient | Expression |
---|---|
α11 < 0, C11 | |
α11 < 0, C12 | |
α11 < 0, C13 | |
α21 < 0, C21 | |
α21 < 0, C22 | |
α21 < 0, C23 | |
α11 > 0, C11 | |
α11 > 0, C12 | |
α11 > 0, C13 | |
α21 > 0, C21 | |
α21 > 0, C22 | |
α21 > 0, C23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, R.; Yu, H.; Peng, B.; Zhan, H.; Zhou, W. Impacts of Residual Stress on Micro Vibratory Platform Used for Inertial Sensor Calibration. Sensors 2020, 20, 3959. https://doi.org/10.3390/s20143959
Hao R, Yu H, Peng B, Zhan H, Zhou W. Impacts of Residual Stress on Micro Vibratory Platform Used for Inertial Sensor Calibration. Sensors. 2020; 20(14):3959. https://doi.org/10.3390/s20143959
Chicago/Turabian StyleHao, Rui, Huijun Yu, Bei Peng, Haixiang Zhan, and Wu Zhou. 2020. "Impacts of Residual Stress on Micro Vibratory Platform Used for Inertial Sensor Calibration" Sensors 20, no. 14: 3959. https://doi.org/10.3390/s20143959
APA StyleHao, R., Yu, H., Peng, B., Zhan, H., & Zhou, W. (2020). Impacts of Residual Stress on Micro Vibratory Platform Used for Inertial Sensor Calibration. Sensors, 20(14), 3959. https://doi.org/10.3390/s20143959