Non-Destructive Detection of Bone Fragments Embedded in Meat Using Hyperspectral Reflectance Imaging Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Push Broom Based Hyperspectral Imaging System
2.3. Acquisition of Hyperspectral Reflectance Spectra and Images
2.4. Hyperspectral Image Calibration
2.5. Principal Component Analysis
2.6. Image Subtraction Algorithm
3. Results and Discussion
3.1. Hyperspectral Reflectance Imaging
3.2. Clustering of Embedded Bone Fragments Using PCA
3.3. Detection of Embedded Bone Fragment Using Subtraction Image
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Chae, H.S.; Yoo, Y.M.; Ahn, C.N.; Ham, J.S.; Jeong, S.G.; Lee, J.M.; Choi, Y.I. Survey of manager’s perception of slaughter and further processed house for the determination of grading of poultry meat cuts. Korean J. Poult. Sci. 2005, 32, 179–186. [Google Scholar]
- Sun, D.W.; Wang, L.J. Heat transfer characteristics of cooked meats using different cooling methods. Int. J. Refrig. 2010, 23, 508–516. [Google Scholar] [CrossRef]
- Desmond, E.M.; Kenny, T.A.; Ward, P.; Sun, D.W. Effect of rapid and conventional cooling methods on the quality of cooked ham joints. Meat Sci. 2000, 56, 271–277. [Google Scholar] [CrossRef]
- Wang, L.J.; Sun, D.W. Effect of operating conditions of a vacuum cooler on cooling performance for large cooked meat joints. J. Food Engin. 2004, 61, 231–240. [Google Scholar] [CrossRef]
- Kiani, H.; Zhang, Z.; Delgado, A.; Sun, D.W. Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Res. Int. 2011, 44, 2915–2921. [Google Scholar] [CrossRef]
- Delgado, A.E.; Sun, D.W. Desorption isotherms and glass transition temperature for chicken meat. J. Food Engin. 2002, 55, 1–8. [Google Scholar] [CrossRef]
- Cui, Z.W.; Sun, L.J.; Chen, W.; Sun, D.W. Preparation of dry honey by microwave-vacuum drying. J. Food Engin. 2008, 84, 582–590. [Google Scholar] [CrossRef]
- Goldman, D. The Physical Hazards of Foreign Materials; Presentation for the public meeting on foreign material contamination; USDA Food Safety and Inspection Service: Washington, DC, USA, September 2002.
- Neethirajan, S.; Jayas, D.S.; White, N.D.G. Detection of sprouted wheat kernels using soft X-ray image analysis. J. Food Engin. 2007, 81, 509–513. [Google Scholar] [CrossRef]
- Liangliang, Y.; Fuzeng, Y.; Noboru, N. Apple internal quality classification using X-ray and SVM. IFAC Proc. Vol. 2011, 44, 14145–14150. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Ming, S.; Zhang, D. A new method for rapid detection of the volume and quality of watermelon based on processing of X-ray. In Proceedings of the International Conference on Computer and Computing Technologies in Agriculture, Beijing, China, 16–19 September 2014. [Google Scholar]
- Dykes, G.W. Automated inspection of food jars for glass fragments. In Proceedings of the Society of Manufacturing Engineers Conference on Machine Vision, Detroit, MI, USA, 25–28 March 1985; pp. 21–30. [Google Scholar]
- Penman, D.; Olsson, O.; Beach, D. Automatic X-ray inspection of canned products for foreign material. In Proceedings of the SPIE Conference on Mach. Vis., Applications, Architectures and Systems Integration, Boston, MA, USA, 1 November 1992; Volume 36, pp. 342–347. [Google Scholar] [CrossRef]
- McFarlance, N.J.B.; Speller, R.D.; Bull, C.R.; Tillerr, R.D. Detection of bone fragments in chicken meat using X-ray backscatter. Biosys. Eng. 2003, 85, 185–199. [Google Scholar] [CrossRef]
- Yoon, S.C.; Lawrence, K.C.; Smith, D.P.; Park, B.; Windham, W.R. Embedded bone fragment detection in chicken fillets using transmittance image enhancement and hyperspectral reflectance imaging. Sens. Instrum. Food Qual. Saf. 2008, 2, 197–207. [Google Scholar] [CrossRef]
- Tao, Y.; Ibarra, J.G. Thickness-compensated X-ray imaging detection of bone fragments in deboned poultry model analysis. Trans. ASAE. 2000, 43, 453–459. [Google Scholar] [CrossRef]
- Gleason, S.S.; Paulus, M.J.; Mullens, J.A. Automatic detection of bone fragments in poultry using multi-energy X-rays. U.S. Patent 6,370,223B1, 4 September 2002. [Google Scholar]
- Wilson, C.R.; Caiafa, A.; Hill, J.C.; Basu, S.K.; Landolfi, P.; Edic, P.M. System and method of fast switching for spectral imaging. U.S. Patent 7,844,030B2, 30 November 2010. [Google Scholar]
- Delincée, H. Detection of food treated with ionizing radiation. Trends Food Sci. Technol. 1998, 9, 73–82. [Google Scholar] [CrossRef]
- Correia, L.R.; Mittal, G.S.; Basir, O.A. Ultrasonic detection of bone fragment in mechanically deboned chicken breasts. Innov. Food Sci. Emerg. Technol. 2008, 9, 109–115. [Google Scholar] [CrossRef]
- Kim, M.S.; Chen, Y.R.; Cho, B.K.; Chao, K.G.; Yang, C.C.; Lefcourt, A.M.; Chan, D. Hyperspectral reflectance and fluorescence line-scan imaging for online defect and fecal contamination inspection of apples. Sens. Instrum. Food Qual. Saf. 2007, 1, 151. [Google Scholar] [CrossRef]
- Lee, K.J.; Kang, S.W.; Delwiche, S.R.; Kim, M.S.; Noh, S.H. Correlation analysis of hyperspectral imagery for multispectral wavelength selection for detection of defects on apples. Sens. Instrum. Food Qual. Saf. 2008, 2, 90–96. [Google Scholar] [CrossRef]
- Cho, B.K.; Kim, M.S.; Lee, H.S.; Delwiche, S.R. Infrared imaging technology for detection of bruising damages of ‘Shingo’ pear. In Proceedings of the Sensing for Agriculture and Food Quality and Safety III. International Society for Optics and Photonics, Orlando, FL, USA, 3 June 2011. [Google Scholar] [CrossRef]
- Fu, X.P.; Kim, M.S.; Chao, K.G.; Qin, J.W.; Lim, J.G.; Lee, H.Y.; Ying, Y.B. Investigation of NIR hyperspectral imaging for discriminating melamine in milk powder. In Proceedings of the Sensing for Agriculture and Food Quality and Safety V. International Society for Optics and Photonics, Baltimore, MD, USA, 29 May 2013. [Google Scholar] [CrossRef]
- Serranti, S.; Bonifazi, G. Hyperspectral imaging and its applications. In Proceedings of the Volume 9899, Optical Sensing and Detection IV, Brussels, Belgium, 29 April 2016; Volume 9899, p. 20. [Google Scholar]
- Grau, R.; Sánchez, A.J.; Girón, J.; Iborra, E.; Fuentes, A.; Barat, J.M. Non-destructive assessment of freshness in packaged sliced chicken breasts using SW-NIR spectroscopy. J. Food Res. Int. 2011, 44, 331–337. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, D.W.; Pu, H.B.; Xie, A.; Han, Z.; Luo, M. Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. J. Food Chem. 2015, 179, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.Z.; Sun, D.W. Near infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. J. Talanta 2013, 109, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Sun, D.W.; Dai, Q.; Han, Z.; Zeng, X.A.; Wang, L. Application of visible hyperspectral imaging for prediction of springiness of fresh chicken meat. Food Anal. Methods. 2015, 8, 380–391. [Google Scholar] [CrossRef]
- Lim, J.G.; Mo, C.Y.; Kim, G.Y.; Choi, I.C. Study on the detection of bone fragment in chicken meat using hyperspectral fluorescence imaging. In Proceedings of the 2014 Korean Society for Agricultural Machinery Conference, Cheonan, Korea, 29–30 October 2014; pp. 224–225. [Google Scholar]
- Cogdill, R.; Hurburgh, C.; Rippke, G. Single-kernel maize analysis by near infrared hyperspectral imaging. Trans. ASAE 2004, 47, 311–320. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values |
---|---|
Spectral range | 987–1701 nm |
Spatial dimensions | 638 × 150 pixels |
Exposure time | 20 ms |
Spectral increment | 3.34 nm |
Spectral resolution | 6 nm |
Image resolution | 0.575 mm pixel−1 |
Moving speed of the translation stage | ~46 mm s−1 |
Frame rate | 98 fps |
Meat Thickness | Number of Pixels Obtained from Each ROI | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exposed Bone Fragments (ExBF) | Embedded Bone Fragments (EmBF) | Chicken Breast | |||||||||||||
1 | 2 | 3 | 4 | 5 | Sum | 1 | 2 | 3 | 4 | 5 | Sum | Meat (CBM) | |||
Sample #1 | |||||||||||||||
3-mm (#1-1) | 36 | 18 | 30 | 30 | 35 | 149 | 36 | 32 | 40 | 35 | 40 | 183 | 189 | ||
6-mm (#1-2) | 32 | 16 | 32 | 16 | 28 | 124 | 30 | 28 | 28 | 35 | 28 | 149 | 204 | ||
9-mm (#1-3) | 36 | 26 | 21 | 30 | 28 | 141 | 36 | 40 | 32 | 35 | 35 | 178 | 189 | ||
Sample #2 | |||||||||||||||
3-mm (#2-1) | 36 | 39 | 32 | 24 | 30 | 161 | 32 | 24 | 21 | 30 | 30 | 137 | 210 | ||
6-mm (#2-2) | 28 | 24 | 30 | 28 | 28 | 138 | 40 | 40 | 24 | 30 | 30 | 164 | 198 | ||
9-mm (#2-3) | 32 | 30 | 24 | 28 | 36 | 150 | 36 | 36 | 32 | 28 | 36 | 168 | 209 | ||
Sample #3 | |||||||||||||||
3-mm (#3-1) | 33 | 36 | 24 | 21 | 24 | 138 | 32 | 24 | 20 | 28 | 28 | 132 | 187 | ||
6-mm (#3-2) | 30 | 33 | 20 | 16 | 24 | 123 | 24 | 28 | 24 | 30 | 32 | 138 | 208 | ||
9-mm (#3-3) | 28 | 30 | 30 | 22 | 24 | 134 | 32 | 36 | 32 | 28 | 28 | 156 | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, J.; Lee, A.; Kang, J.; Seo, Y.; Kim, B.; Kim, G.; Kim, S.M. Non-Destructive Detection of Bone Fragments Embedded in Meat Using Hyperspectral Reflectance Imaging Technique. Sensors 2020, 20, 4038. https://doi.org/10.3390/s20144038
Lim J, Lee A, Kang J, Seo Y, Kim B, Kim G, Kim SM. Non-Destructive Detection of Bone Fragments Embedded in Meat Using Hyperspectral Reflectance Imaging Technique. Sensors. 2020; 20(14):4038. https://doi.org/10.3390/s20144038
Chicago/Turabian StyleLim, Jongguk, Ahyeong Lee, Jungsook Kang, Youngwook Seo, Balgeum Kim, Giyoung Kim, and Seong Min Kim. 2020. "Non-Destructive Detection of Bone Fragments Embedded in Meat Using Hyperspectral Reflectance Imaging Technique" Sensors 20, no. 14: 4038. https://doi.org/10.3390/s20144038