A Pilot Study to Assess the Reliability of Sensing Joint Acoustic Emissions of the Wrist
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Participants
2.3. Experimental Protocol
2.4. Signal Extraction, Signal Processing, and Signal Strength Analysis
2.5. Statistical Analysis
3. Results
3.1. Reliability Measurements
3.2. Signal Strength
4. Discussion
4.1. Evaluating the Ability of Prescribed Exercises to Excite Joint Sounds
4.2. Evaluating Microphone Placement Locations around the Wrist
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Statements
Appendix A
References
- Rettig, A.C. Epidemiology of hand and wrist injuries in sports. Clin. Sports Med. 1998, 17, 401–406. [Google Scholar] [CrossRef]
- Hoeksma, A.F.; Zinger, W.G.; Van Rossum, M.A.; Dolman, K.M.; Dekker, J.; Roorda, L.D. THU0297 High prevalence of hand and wrist impairments in juvenile idiopathic arthritis (JIA). Ann. Rheum. Dis. 2013. [Google Scholar] [CrossRef]
- Berger, R.A.; Garcia-Elias, M. General Anatomy of the Wrist. In Biomechanics of the Wrist Joint; An, K.N., Berger, R.A., Cooney, W.P., Eds.; Springer: New York, NY, USA, 1991; pp. 1–22. [Google Scholar]
- Woolf, A.D.; Åkesson, K. Understanding the burden of musculoskeletal conditions: The burden is huge and not reflected in national health priorities. BMJ Br. Med. J. 2001, 322, 1079. [Google Scholar] [CrossRef] [PubMed]
- Blodgett, W.E. Auscultation of the Knee Joint. Bost. Med. Surg. J. 1902, 146, 63–66. [Google Scholar] [CrossRef]
- Teague, C.N.; Hersek, S.; Toreyin, H.; Millard-Stafford, M.L.; Jones, M.L.; Kogler, G.F.; Sawka, M.N.; Inan, O.T. Novel methods for sensing acoustical emissions from the knee for wearable joint health assessment. IEEE Trans. Biomed. Eng. 2016, 63, 1581–1590. [Google Scholar] [CrossRef]
- Semiz, B.; Hersek, S.; Whittingslow, D.C.; Ponder, L.A.; Prahalad, S.; Inan, O.T. Using Knee Acoustical Emissions for Sensing Joint Health in Patients with Juvenile Idiopathic Arthritis: A Pilot Study. IEEE Sens. J. 2018, 18, 9128–9136. [Google Scholar] [CrossRef]
- Whittingslow, D.C. Anatomy of a Joint Sound – Using Joint Acoustic Emissions to Diagnose and Grade Musculoskeletal Disease and Injury. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2019. [Google Scholar]
- Semiz, B.; Hersek, S.; Whittingslow, D.C.; Ponder, L.; Prahalad, S.; Inan, O.T. Change point detection in knee acoustic emissions using the teager operator: A preliminary study in patients with juvenile idiopathic arthritis. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical and Health Informatics, Chicago, IL, USA, 19–22 May 2019. [Google Scholar] [CrossRef]
- Hersek, S.; Pouyan, M.B.; Teague, C.N.; Sawka, M.N.; Millard-Stafford, M.L.; Kogler, G.F.; Wolkoff, P.; Inan, O.T. Acoustical emission analysis by unsupervised graph mining: A novel biomarker of knee health status. IEEE Trans. Biomed. Eng. 2018, 65, 1291–1300. [Google Scholar] [CrossRef]
- Frank, C.B.; Rangayyan, R.M.; Bell, G.D. Analysis of knee joint sound signals for non-invasive diagnosis of cartilage pathology. IEEE Eng. Med. Biol. Mag. 1990, 9, 65–68. [Google Scholar] [CrossRef]
- Befrui, N.; Elsner, J.; Flesser, A.; Huvanandana, J.; Jarrousse, O.; Le, T.N.; Müller, M.; Schulze, W.H.W.; Taing, S.; Weidert, S. Vibroarthrography for early detection of knee osteoarthritis using normalized frequency features. Med. Biol. Eng. Comput. 2018, 56, 1499–1514. [Google Scholar] [CrossRef]
- Khan, T.I.; Kusumoto, M.; Nakamura, Y.; Ide, S.; Yoshimura, T. Acoustic emission technique as an adaptive biomarker in integrity analysis of knee joint. In Proceedings of the Regional Conference on Acoustics and Vibration 2017, Bali, Indonesia, 27–28 November 2017. [Google Scholar] [CrossRef]
- Ota, S.; Ando, A.; Tozawa, Y.; Nakamura, T.; Okamoto, S.; Sakai, T.; Hase, K. Preliminary study of optimal measurement location on vibroarthrography for classification of patients with knee osteoarthritis. J. Phys. Ther. Sci. 2016, 28, 2904–2908. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.-K.; Pouyan, M.B.; Whittingslow, D.C.; Ganti, V.; Inan, O.T. Quantifying the Effects of Increasing Mechanical Stress on Knee Acoustical Emissions Using Unsupervised Graph Mining. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Madeleine, P.; Andersen, R.E.; Larsen, J.B.; Arendt-Nielsen, L.; Samani, A. Wireless multichannel vibroarthrographic recordings for the assessment of knee osteoarthritis during three activities of daily living. Clin. Biomech. 2020, 72, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Athavale, Y.; Krishnan, S. A telehealth system framework for assessing knee-joint conditions using vibroarthrographic signals. Biomed. Signal. Process. Control. 2020, 55. [Google Scholar] [CrossRef]
- Bolus, N.B.; Jeong, H.K.; Whittingslow, D.C.; Inan, O.T. A glove-based form factor for collecting joint acoustic emissions: Design and validation. Sensors 2019, 19, 2683. [Google Scholar] [CrossRef] [Green Version]
- Kalo, K.; Niederer, D.; Sus, R.; Sohrabi, K.; Groß, V.; Vogt, L. Reliability of Vibroarthrography to Assess Knee Joint Sounds in Motion. Sensors 2020, 20, 1998. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Bedri, A.K.; Reyes, G.; Bercik, B.; Inan, O.T.; Starner, T.E.; Abowd, G.D. TapSkin: Recognizing on-skin input for smartwatches. In Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces: Nature Meets Interactive Surfaces, Niagara Falls, ON, Canada, 6–9 November 2016. [Google Scholar] [CrossRef]
- Gharehbaghi, S.; Whittingslow, D.C.; Ponder, L.A.; Prahalad, S.; Inan, O.T. Joint Acoustic Emissions as a Biomarker for Knee Health Assessment in Loaded and Unloaded Exercises. In Proceedings of the American Society of Biomechanics Annual Meeting 2020, Atlanta, GA, USA, 4–7 August 2020. [Google Scholar]
- Kottner, J.; Audigé, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hróbjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J. Clin. Epidemiol. 2011, 64, 96–106. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Fleiss, J.L. The Design and Analysis of Clinical Experiments; Wiley Classics Library, Ed.; Wiley: New York, NY, USA, 1999; ISBN 0471820474. [Google Scholar]
- Pérez-Cruz, F. Kullback-leibler divergence estimation of continuous distributions. In Proceedings of the IEEE International Symposium on Information Theory, Toronto, ON, Canada, 6–11 July 2008; pp. 1666–1670. [Google Scholar] [CrossRef]
- Fuglede, B.; Topsøe, F. Jensen-Shannon divergence and Hubert space embedding. In Proceedings of the IEEE International Symposium on Information Theory, Chicago, IL, USA, 27 June–2 July 2004. [Google Scholar] [CrossRef]
- Whittingslow, D.C.; Jeong, H.K.; Ganti, V.G.; Kirkpatrick, N.J.; Kogler, G.F.; Inan, O.T. Acoustic Emissions as a Non-invasive Biomarker of the Structural Health of the Knee. Ann. Biomed. Eng. 2020, 48, 225–235. [Google Scholar] [CrossRef]
- Wiens, A.D.; Prahalad, S.; Inan, O.T. VibroCV: A computer vision-based vibroarthrography platform with possible application to Juvenile idiopathic arthritis. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Orlando, FL, USA, 16–20 August 2016; pp. 4431–4434. [Google Scholar] [CrossRef]
- Ryu, J.H.; Miyata, N.; Kouchi, M.; Mochimaru, M.; Lee, K.H. Analysis of skin movement with respect to flexional bone motion using MR images of a hand. J. Biomech. 2006, 35, 844–852. [Google Scholar] [CrossRef]
- Richard, R.; Ford, J.; Miller, S.F.; Staley, M. Photographic measurement of volar forearm skin movement with wrist extension: The influence of elbow position. J. Burn Care Rehabil. 1994, 15, 58–61. [Google Scholar] [CrossRef]
- Charles, S.K.; Hogan, N. Dynamics of wrist rotations. J. Biomech. 2011, 44, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Surface Markings of the Upper Extremity-Human Anatomy. Available online: https://theodora.com/anatomy/surface_markings_of_the_upper_extremity.html (accessed on 8 May 2020).
- Fam, A.G.; Lawry, G.V.; Kreder, H.J. Musculoskeletal Examination and Joint Injection Techniques; Mosby Elsevier: Philadelphia, PA, USA, 2016; pp. 33–45. [Google Scholar]
Intrasession Reliability | ||||
---|---|---|---|---|
95% CI | ||||
ICC | Lower Bound | Upper Bound | CV | |
Flexion-Extension | 0.632 | 0.478 | 0.758 | 0.161 |
Rotation | 0.820 | 0.745 | 0.881 | 0.107 |
Location P1 | 0.631 | 0.477 | 0.757 | 0.156 |
Location P2 | 0.752 | 0.649 | 0.836 | 0.152 |
Location P3 | 0.847 | 0.784 | 0.899 | 0.153 |
Location D1 | 0.811 | 0.734 | 0.875 | 0.157 |
Location D2 | 0.837 | 0.770 | 0.892 | 0.143 |
Location M1 | 0.849 | 0.787 | 0.900 | 0.099 |
Location M2 | 0.857 | 0.798 | 0.905 | 0.101 |
Location M3 | 0.872 | 0.819 | 0.915 | 0.109 |
Intersession Reliability | ||||
---|---|---|---|---|
95% CI | ||||
ICC | Lower Bound | Upper Bound | CV | |
Flexion-Extension | 0.631 | 0.525 | 0.723 | 0.236 |
Rotation | 0.789 | 0.729 | 0.841 | 0.183 |
Location P1 | 0.629 | 0.399 | 0.801 | 0.225 |
Location P2 | 0.760 | 0.614 | 0.871 | 0.241 |
Location P3 | 0.847 | 0.754 | 0.917 | 0.233 |
Location D1 | 0.817 | 0.706 | 0.902 | 0.231 |
Location D2 | 0.840 | 0.743 | 0.914 | 0.232 |
Location M1 | 0.855 | 0.768 | 0.922 | 0.169 |
Location M2 | 0.870 | 0.791 | 0.930 | 0.170 |
Location M3 | 0.886 | 0.817 | 0.938 | 0.176 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hochman, D.M.; Gharehbaghi, S.; Whittingslow, D.C.; Inan, O.T. A Pilot Study to Assess the Reliability of Sensing Joint Acoustic Emissions of the Wrist. Sensors 2020, 20, 4240. https://doi.org/10.3390/s20154240
Hochman DM, Gharehbaghi S, Whittingslow DC, Inan OT. A Pilot Study to Assess the Reliability of Sensing Joint Acoustic Emissions of the Wrist. Sensors. 2020; 20(15):4240. https://doi.org/10.3390/s20154240
Chicago/Turabian StyleHochman, Daniel M., Sevda Gharehbaghi, Daniel C. Whittingslow, and Omer T. Inan. 2020. "A Pilot Study to Assess the Reliability of Sensing Joint Acoustic Emissions of the Wrist" Sensors 20, no. 15: 4240. https://doi.org/10.3390/s20154240
APA StyleHochman, D. M., Gharehbaghi, S., Whittingslow, D. C., & Inan, O. T. (2020). A Pilot Study to Assess the Reliability of Sensing Joint Acoustic Emissions of the Wrist. Sensors, 20(15), 4240. https://doi.org/10.3390/s20154240