Use of Predicted Behavior from Accelerometer Data Combined with GPS Data to Explore the Relationship between Dairy Cow Behavior and Pasture Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Farm, Animal and Sensors Description
2.1.2. Data Collection
Accelerometer and GPS Data
Weather
Grass Height and Herbage Allowance
Structural and Botanical Characteristics
- (i)
- (ii)
- The steepest slopes were located in the paddocks using the data from the French’s National Geographic Institute data [19]. The slopes ranging between 10% and 20% were referred to as a “moderate slope” and slopes higher than 20% were referred to as a “steep slope”. The remaining slopes were referred to as a “low slope” by default. Slopes in the paddocks are shown in Figure 2b.
- (iii)
- The soil moisture was considered in the paddocks. Moist soil areas were located in the paddocks using the data from the French’s National Geographic Institute [19]. Such areas were referred to as “moist soil” and the remaining areas were referred to as “dry soil” by default. The soil moisture in the paddocks is provided in Figure 2c. It should be mentioned that no moist soil area was found in the TG.
- (iv)
- The plant species were identified and recorded using a method based on the quadrat method [20,21]. Approximately 97 measures per hectare were carried out in each pasture, corresponding to 165 measures in the PG and 182 in the TG. For every measure, a rating ranging between 1 and 10 was attributed to the five most represented species in the area. The more a plant species was represented in the area, the closer its rating was to 10. The other plant species identified in the area were only noted without a rating. The bare ground was also considered in the rating. Seventy-six different plant species were identified in the PG and 41 in the TG. Each measure was also geolocated in the paddock based on the geolocation data obtained during grass height measurements with the GrassHopper plate meter (Section 2.1.2).
2.2. Dataset Preparation
2.2.1. Prediction of Behaviors of Dairy Cows
- Grazing: biting, taking frequent bites or chewing and searching without raising the head.
- Walking: movement from one location to another without lowering the head at ground level.
- Ruminating while lying: lying with regurgitating rumen bolus before chewing and then re-swallowing.
- Ruminating while standing: standing with regurgitating rumen bolus before chewing and then re-swallowing.
- Resting while lying: lying without rumination.
- Resting while standing: standing without movement or rumination.
2.2.2. Calculation of the Time-budget Expressed in Each Zone of the Pastures
2.2.3. Characterization of Each Zone in the Pasture
- Structural characteristics
- Slope
- Soil moisture
- Botanical characteristics
2.2.4. Grouping the Zones and Calculation of the Associated Average Time-budgets
2.3. Time-Budget Modeling According to the Pasture Characteristics
2.3.1. Consideration of the Correlations between the Pasture Characteristics
2.3.2. Modeling with a Linear Mixed Model with an Analysis of Variance
3. Results
3.1. Average Time-Budget of Every Behavior in the Pasture
3.2. Effect of Each Pasture Characteristic on the Behaviour of Dairy Cows
3.2.1. Effect of the Pasture Characteristics on the Overall Cow Location and on the Behavior of Dairy Cows in the PG
- ❖ Overall cow location
- ❖ Grazing time
- ❖ Walking time
- ❖ Ruminating time
- ❖ Resting time
3.2.2. Effect of the Pasture Characteristics on the Overall Cow Location and on the Behavior of Dairy Cows in the TG
- ❖ Overall cow location
- ❖ Grazing time
- ❖ Walking time
- ❖ Ruminating time
- ❖ Resting time
4. Discussion
4.1. Different Organization of the Dairy Cow Behavior in the Two Pastures
4.2. Potential of Geolocated Behaviours to Improve Precision Grazing and Animal Health and Welfare
4.3. Current Technical Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMS | Auto Milking System |
ANOVA | ANalysis of VAriance |
DM | Dry Matter |
GPS | Global Positioning System |
AHC | Agglomerative Hierarchical Clustering |
HMM | Hidden Markov Model |
Tbu | Time-budget unit |
TG | Temporary Grassland |
PG | Permanent Grassland |
XGB | eXtreme Gradient Boosting |
Appendix A
(a) | |||||
ID Cow | Parity | Days in Milk | |||
6244 | 1 | 33 | |||
6237 | 1 | 93 | |||
6220 | 1 | 111 | |||
6196 | 1 | 164 | |||
6224 | 1 | 165 | |||
6178 | 1 | 178 | |||
6219 | 1 | 181 | |||
6221 | 1 | 200 | |||
6214 | 1 | 223 | |||
6207 | 1 | 252 | |||
6189 | 1 | 276 | |||
6193 | 1 | 289 | |||
6206 | 1 | 300 | |||
6216 | 1 | 307 | |||
6203 | 1 | 327 | |||
6165 | 1 | 329 | |||
6199 | 1 | 355 | |||
6186 | 1 | 382 | |||
6177 | 1 | 432 | |||
6180 | 1 | 433 | |||
6158 | 1 | 533 | |||
6076 | 1 | 590 | |||
6062 | 1 | 959 | |||
6190 | 2 | 7 | |||
6099 | 2 | 96 | |||
6156 | 2 | 98 | |||
6167 | 2 | 135 | |||
6166 | 2 | 166 | |||
6157 | 2 | 181 | |||
6159 | 2 | 196 | |||
6130 | 2 | 237 | |||
6111 | 2 | 264 | |||
6100 | 2 | 327 | |||
6063 | 2 | 332 | |||
6137 | 2 | 352 | |||
6122 | 2 | 446 | |||
6097 | 2 | 455 | |||
6152 | 3 | 5 | |||
5997 | 3 | 43 | |||
6087 | 3 | 89 | |||
5988 | 3 | 93 | |||
6074 | 3 | 101 | |||
6054 | 3 | 103 | |||
6095 | 3 | 115 | |||
6092 | 3 | 175 | |||
6050 | 3 | 196 | |||
6048 | 3 | 220 | |||
6077 | 3 | 220 | |||
6089 | 3 | 221 | |||
6044 | 3 | 303 | |||
6007 | 3 | 309 | |||
6041 | 3 | 313 | |||
6047 | 3 | 333 | |||
6035 | 3 | 337 | |||
6066 | 3 | 366 | |||
6015 | 3 | 380 | |||
5958 | 3 | 721 | |||
5992 | 4 | 5 | |||
6017 | 4 | 7 | |||
6005 | 4 | 75 | |||
5981 | 4 | 76 | |||
5994 | 4 | 148 | |||
5929 | 4 | 155 | |||
5947 | 4 | 273 | |||
5968 | 4 | 367 | |||
5887 | 4 | 385 | |||
5898 | 5 | 166 | |||
5926 | 5 | 269 | |||
5798 | 5 | 394 | |||
5819 | 6 | 132 | |||
5744 | 7 | 228 | |||
(b) | |||||
Mean | Standard Deviation | Minimum | Maximum | ||
Herd | Parity | 2.5 | 1.4 | 1 | 7 |
Days in milk | 250 | 167 | 5 | 959 | |
Selected cows | Parity | 2.7 | 1.6 | 1 | 7 |
Days in milk | 209 | 165 | 43 | 959 |
Combination | Type of Pasture Characteristics | Before Re-Assignment | After Re-Assignment |
---|---|---|---|
Permanent Grassland | |||
1 | Soil moisture | MS1 | MS1 |
Hedges | Hedges_MS1 | None | |
2 | Slope | Steep | Low |
Botanical classes | Class_Slp | Class_Slp | |
3 | Botanical classes | Class_3 | Class_4 |
Hedges | H9 | H9 | |
Temporary Grassland | |||
1 | Hedges | H2 | H2 |
Slope | Presence | Absence | |
Botanical classes | Class_2 | Class_2 | |
2 | Boundaries | Bnd_AMS | Bnd_AMS |
Botanical classes | Class_3 | Class_2 | |
3 | Boundaries | F3 | F3 |
Botanical classes | Class_1 | Class_2 | |
4 | Boundaries | F4 | F4 |
Botanical classes | Class 1 | Class_2 |
Effect | Overall | Grazing | Walking | Ruminating Lying | Ruminating Standing | Resting Lying | Resting Standing | ||
---|---|---|---|---|---|---|---|---|---|
Pasture | Permanent Grassland | ||||||||
Day of Grazing | Sign. 1 | * | *** | ** | ** | † | * | 0.45 | |
mean ± se | Day 1 | 45.8 a ± 5.5 | 18.4 a ± 3.5 | 1.8 a ± 0.3 | 8.5 a ± 1.3 | 2.0 a ± 0.3 | 8.6 a ± 1.3 | 1.9 a ± 0.3 | |
Day 2 | 59.4 c ± 5.5 | 22.7 b ± 3.5 | 1.9 a ± 0.3 | 12.8 b ± 1.3 | 2.0 a ± 0.3 | 13.0 b ± 1.3 | 2.0 a ± 0.3 | ||
Day 3 | 49.0 ab ± 5.5 | 19.1 ab ± 3.5 | 2.3 ab ± 0.3 | 9.3 a ± 1.3 | 2.6 a ± 0.3 | 8.7 a ± 1.3 | 2.5 a ± 0.3 | ||
Day 4 | 52.5 abc ± 5.5 | 20.1 ab ± 3.5 | 2.8 b ± 0.3 | 10.8 ab ± 1.3 | 2.1 a ± 0.3 | 9.9 ab ± 1.3 | 2.0 a ± 0.3 | ||
Day 5 | 57.2 bc ± 5.5 | 26.9 c ± 3.5 | 2.0 a ± 0.3 | 10.3 ab ± 1.3 | 2.2 a ± 0.3 | 9.1 a ± 1.3 | 2.2 a ± 0.3 | ||
Pasture | Temporary Grassland | ||||||||
Day of Grazing | Sign. 1 | * | *** | 0.60 | ** | * | * | 0.21 | |
mean ± se | Day 1 | 7.6 a ± 3.6 | 5.4 a ± 2.1 | 0.5 ± 0.2 | 0.7 a ± 0.6 | 0.7 a ± 0.3 | 1.2 a ± 0.3 | 0.7 a ± 0.3 | |
Day 2 | 16.4 bc ± 3.6 | 12.3 bc ± 2.1 | 0.6 ± 0.2 | 1.4 ab ± 0.6 | 1.4 a ± 0.3 | 0.9 a ± 0.3 | 1.2 a ± 0.3 | ||
Day 3 | 10.4 ab ± 3.6 | 8.2 abc ± 2.1 | 0.4 ± 0.2 | 1.7 ab ± 0.6 | 0.4 a ± 0.3 | 0.4 a ± 0.3 | 0.7 a ± 0.3 | ||
Day 4 | 19.1 c ± 3.6 | 13.2 c ± 2.1 | 0.7 ± 0.2 | 3.4 b ± 0.6 | 0.9 a ± 0.3 | 1.0 a ± 0.3 | 1.2 a ± 0.3 | ||
Day 5 | 8.4 ab ± 3.6 | 6.6 ab ± 2.1 | 0.4 ± 0.2 | 1.4 a ± 0.3 | 0.4 a ± 0.3 | 0.3 a ± 0.3 | 0.6 a ± 0.3 |
Effect | Overall | Grazing | Walking | Ruminating Lying | Ruminating Standing | Resting Lying | Resting Standing | ||
---|---|---|---|---|---|---|---|---|---|
Intercept | Est. ± se | 3.2 ± 4.4 | 5.1 ± 2.3 | 0.5 ± 0.3 | –0.1 ± 1.0 | 0.2 ± 0.2 | –0.2 ± 1.0 | 0.7 ± 0.2 | |
Sign. | 0.46 | * | † | 0.91 | 0.45 | 0.86 | ** | ||
Day | Day 2 | Est. ± se | 1.4 ± 3.3 | 4.3 ± 1.4 | 0.2 ± 0.3 | 4.3 ± 1.2 | 0.03 ± 0.3 | 4.4 ± 1.3 | |
Sign. | *** | ** | 0.65 | *** | 0.90 | *** | |||
Day 3 | Est. ± se | 3.2 ± 3.3 | 0.8 ± 1.4 | 0.4 ± 0.3 | 0.8 ± 1.2 | 0.6 ± 0.3 | 0.2 ± 1.3 | ||
Sign. | 0.33 | 0.57 | † | 0.53 | * | 0.89 | |||
Day 4 | Est. ± se | 6.6 ± 3.3 | 1.7 ± 1.4 | 0.9 ± 0.3 | 2.3 ± 1.2 | 0.1 ± 0.3 | 1.3 ± 1.3 | ||
Sign. | * | 0.21 | *** | † | 0.6 | 0.30 | |||
Day 5 | Est. ± se | 1.3 ± 3.3 | 8.5 ± 1.4 | 0.2 ± 0.3 | 1.8 ± 1.2 | 0.3 ± 0.3 | 0.5 ± 1.3 | ||
Sign. | *** | *** | 0.44 | 0.14 | 0.3 | 0.70 | |||
Trees | T1 | Est. ± se | 20.5 ± 7.4 | 4.0 ± 3.2 | 0.1 ± 0.5 | 5.7 ± 2.6 | 2.4 ± 0.6 | 5.5 ± 2.7 | 2.1 ± 0.5 |
Sign. | ** | 0.21 | 0.91 | * | *** | * | *** | ||
T2 | Est. ± se | 93.8 ± 6.1 | 30.8 ± 2.7 | 2.5 ± 0.5 | 26.0 ± 2.1 | 3.2 ± 0.4 | 27.7 ± 2.2 | 4.4 ± 0.4 | |
Sign. | *** | *** | *** | *** | *** | *** | *** | ||
T3 | Est. ± se | 16.7 ± 4.9 | 8.4 ± 2.1 | 1.1 ± 0.4 | 2.9 ± 1.7 | 1.6 ± 0.3 | 1.8 ± 1.7 | 1.0 ± 0.3 | |
Sign. | *** | *** | ** | † | *** | 0.30 | ** | ||
Hedges | H1 | Est. ± se | 0.0 ± 4.6 | 0.8 ± 2.0 | 0.0 ± 0.3 | ||||
Sign. | 0.99 | 0.69 | 0.95 | ||||||
H5 | Est. ± se | 1.7 ± 6.2 | 0.3 ± 2.7 | 0.0 ± 0.4 | |||||
Sign. | 0.78 | 0.90 | 0.91 | ||||||
H6 | Est. ± se | –8.5 ± 4.5 | –3.9 ± 2.0 | 0.0 ± 0.3 | |||||
Sign. | † | † | 0.95 | ||||||
HN | Est. ± se | –1.4 ± 4.5 | –7.5 ± 2.0 | –0.9 ± 0.3 | |||||
Sign. | ** | *** | ** | ||||||
H9 | Est. ± se | 5.7 ± 4.6 | 4.3 ± 2.0 | –1.3 ± 0.3 | |||||
Sign. | 0.21 | * | *** | ||||||
H10 | Est. ± se | 2.4 ± 5.0 | 0.1 ± 2.2 | 1.0 ± 0.4 | |||||
Sign. | 0.21 | 0.95 | 0.77 | ||||||
Boundaries | PA | Est. ± se | –2.9 ± 3.2 | ||||||
Sign. | 0.35 | ||||||||
F1 | Est. ± se | –6.6 ± 2.7 | |||||||
Sign. | * | ||||||||
Slope | Mod. | Est. ± se | 5.6 ± 2.7 | 2.7 ± 1.2 | 0.2 ± 0.2 | ||||
Sign. | * | * | 0.32 | ||||||
Steep | Est. ± se | 8.9 ± 3.4 | 5.7 ± 1.5 | 0.6 ± 0.2 | |||||
Sign. | ** | *** | * | ||||||
Soil Moisture | MS1 | Est. ± se | –8.3 ± 3.9 | –3.5 ± 1.7 | –1.0 ± 0.3 | ||||
Sign. | * | * | *** | ||||||
MS2 | Est. ± se | 12.6 ± 5.4 | 8.6 ± 2.4 | 0.4 ± 0.4 | |||||
Sign. | * | *** | 0.25 | ||||||
Botanical Classes | Class 3 | Est. ± se | 11.8 ± 3.9 | 6.8 ± 1.7 | 0.6 ± 0.3 | 0.0 ± 0.3 | |||
Sign. | ** | *** | * | 0.89 | |||||
Class 5 | Est. ± se | 2.8 ± 3.4 | –1.3 ± 1.5 | –0.3 ± 0.2 | 0.6 ± 0.2 | ||||
Sign. | 0.4 | 0.36 | 0.18 | * | |||||
Class_MA | Est. ± se | 6.6 ± 4.0 | 1.9 ± 1.8 | –0.1 ± 0.2 | 0.6 ± 0.3 | ||||
Sign. | 0.1 | 0.27 | 0.62 | * | |||||
Class_Slp | Est. ± se | 5.8 ± 4.5 | 2.3 ± 1.9 | 0.4 ± 0.3 | 0.4 ± 0.3 | ||||
Sign. | 0.19 | 0.26 | 0.21 | 0.26 |
Effect | Overall | Grazing | Walking | Ruminating Lying | Ruminating Standing | Resting Lying | Resting Standing | ||
---|---|---|---|---|---|---|---|---|---|
Intercept | Est. ± se | 11.7 ± 3.2 | 7.7 ± 1.9 | 0.4 ± 0.1 | 0.1 ± 0.6 | 0.3 ± 0.3 | 1.2 ± 0.3 | 0.5 ± 0.2 | |
Sign. | *** | *** | *** | 0.80 | 0.32 | *** | * | ||
Day | Day 2 | Est. ± se | 8.8 ± 3.1 | 6.9 ± 2.2 | 0.8 ± 0.7 | 0.8 ± 0.3 | –0.4 ± 0.3 | ||
Sign. | ** | ** | 0.3 | * | 0.29 | ||||
Day 3 | Est. ± se | 2.8 ± 31 | 2.8 ± 2.2 | 1.0 ± 0.7 | –0.07 ± 0.3 | –0.8 ± 0.3 | |||
Sign. | 0.36 | 0.21 | 0.2 | 0.82 | * | ||||
Day 4 | Est. ± se | 11.5 ± 3.1 | 7.8 ± 2.2 | 2.7 ± 0.7 | 0.4 ± 0.3 | –0.3 ± 0.3 | |||
Sign. | *** | *** | *** | 0.22 | 0.42 | ||||
Day 5 | Est. ± se | 0.8 ± 3.1 | 1.2 ± 2.2 | 0.7 ± 0.7 | 0.4 ± 0.3 | –0.9 ± 0.3 | |||
Sign. | 0.80 | 0.58 | 0.33 | 0.22 | * | ||||
Hedges | H1 | Est. ± se | –2.5 ± 3.5 | –0.2 ± 2.2 | |||||
Sign. | 0.47 | 0.94 | |||||||
H2 | Est. ± se | –10.7 ± 4.0 | –7.1 ± 2.5 | ||||||
Sign. | ** | ** | –0.1 ± 0.3 | ||||||
Boundaries | F1 | Est. ± se | –5.4 ± 3.0 | –0.2 ± 0.3 | 0.80 | ||||
Sign. | † | 0.53 | –0.2 ± 0.3 | ||||||
Bnd_AMS | Est. ± se | –2.9 ± 3.3 | –0.1 ± 0.3 | 0.59 | |||||
Sign. | 0.38 | 0.77 | 0.0 ± 0.6 | ||||||
F3 | Est. ± se | –1.5 ± 5.2 | 0.1 ± 0.5 | 0.94 | |||||
Sign. | 0.78 | 0.86 | 1.7 ± 0.4 | ||||||
F4 | Est. ± se | 7.8 ± 4.0 | 1.4 ± 0.4 | *** | |||||
Sign. | † | *** | |||||||
Slope | Presence | Est. ± se | |||||||
Sign. | |||||||||
Botanical Classes | Class 1 | Est. ± se | –4.8 ± 3.9 | –3.8 ± 2.7 | –0.2 ± 0.3 | 0.1 ± 0.8 | |||
Sign. | 0.21 | 0.14 | 0.4 | 0.95 | |||||
Class 3 | Est. ± se | 6.8 ± 2.9 | 4.0 ± 1.8 | 0.5 ± 0.2 | 1.5 ± 0.6 | ||||
Sign. | * | * | ** | ** |
References
- Dumont, B.; Fortun-Lamothe, L.; Jouven, M.; Thomas, M.; Tichit, M. Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 2013, 7, 1028–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, P.C.F. Harry Stobbs Memorial Lecture: Can grazing behavior support innovations in grassland management? Trop. Grassl. 2013, 1, 137–155. [Google Scholar] [CrossRef]
- Merlin, A.; Ravinet, N.; Madouasse, A.; Bareille, N.; Chauvin, A.; Chartier, C. Mid-season targeted selective anthelmintic treatment based on flexible weight gain threshold for nematode infection control in dairy calves. Animal 2018, 12, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Agoulon, A.; Malandrin, L.; Lepigeon, F.; Vénisse, M.; Bonnet, S.; Becker, C.A.M.; Hoch, T.; Bastian, S.; Plantard, O.; Beaudeau, F. A Vegetation Index qualifying pasture edges is related to Ixodes ricinus density and to Babesia divergens seroprevalence in dairy cattle herds. Vet. Parasitol. 2012, 185, 101–109. [Google Scholar] [CrossRef]
- Charlier, J.; Bennema, S.C.; Caron, Y.; Counotte, M.; Ducheyne, E.; Hendrickx, G.; Vercruysse, J. Towards assessing fine-scale indicators for the spatial transmission risk of Fasciola hepatica in cattle. Geospatial Health 2011, 5, 239. [Google Scholar] [CrossRef]
- Lush, L.; Wilson, R.P.; Holton, M.D.; Hopkins, P.; Marsden, K.A.; Chadwick, D.R.; King, A.J. Classification of sheep urination events using accelerometers to aid improved measurements of livestock contributions to nitrous oxide emissions. Comput. Electron. Agric. 2018, 150, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Wechsler, B. Coping and coping strategies: A behavioural view. Appl. Anim. Behav. Sci. 1995, 43, 123–134. [Google Scholar] [CrossRef]
- Putfarken, D.; Dengler, J.; Lehmann, S.; Härdtle, W. Site use of grazing cattle and sheep in a large-scale pasture landscape: A GPS/GIS assessment. Appl. Anim. Behav. Sci. 2008, 111, 54–67. [Google Scholar] [CrossRef] [Green Version]
- de Weerd, N.; van Langevelde, F.; van Oeveren, H.; Nolet, B.A.; Kölzsch, A.; Prins, H.H.T.; de Boer, W.F. Deriving Animal Behaviour from High- Frequency GPS: Tracking Cows in Open and Forested Habitat. PLoS ONE 2015. [Google Scholar] [CrossRef]
- Schlecht, E.; Hülsebusch, C.; Mahler, F.; Becker, K. The use of differentially corrected global positioning system to monitor activities of cattle at pasture. Appl. Anim. Behav. Sci. 2004, 85, 185–202. [Google Scholar] [CrossRef]
- Ganskopp, D.C.; Johnson, D.D. GPS Error in Studies Addressing Animal Movements and Activities. Rangel. Ecol. Manag. 2007, 60, 350–358. [Google Scholar] [CrossRef]
- Robert, B.; White, B.J.; Renter, D.G.; Larson, R.L. Evaluation of three-dimensional accelerometers to monitor and classify behavior patterns in cattle. Comput. Electron. Agric. 2009, 67, 80–84. [Google Scholar] [CrossRef]
- Andriamandroso, A.L.H.; Lebeau, F.; Beckers, Y.; Froidmont, E.; Dufrasne, I.; Heinesch, B.; Dumortier, P.; Blanchy, G.; Blaise, Y.; Bindelle, J. Development of an open-source algorithm based on inertial measurement units (IMU) of a smartphone to detect cattle grass intake and ruminating behaviors. Comput. Electron. Agric. 2017, 139, 126–137. [Google Scholar] [CrossRef]
- Riaboff, L.; Poggi, S.; Madouasse, A.; Couvreur, S.; Aubin, S.; Bédère, N.; Goumand, E.; Chauvin, A.; Plantier, G. Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data. Comput. Electron. Agric. 2020, 169, 105179. [Google Scholar] [CrossRef]
- Riaboff, L.; Aubin, S.; Bédère, N.; Couvreur, S.; Madouasse, A.; Goumand, E.; Chauvin, A.; Plantier, G. Evaluation of pre-processing methods for the prediction of cattle behaviour from accelerometer data. Comput. Electron. Agric. 2019, 165, 104961. [Google Scholar] [CrossRef]
- Manning, J.K.; Cronin, G.M.; González, L.A.; Hall, E.J.S.; Merchant, A.; Ingram, L.J. The effects of global navigation satellite system (GNSS) collars on cattle (Bos taurus) behaviour. Appl. Anim. Behav. Sci. 2017, 187, 54–59. [Google Scholar] [CrossRef]
- Info Climat: Climatologie du mois de Mai. 2018. Available online: https://www.infoclimat.fr/climatologie-mensuelle/07230/mai/2018/angers-beaucouze.html (accessed on 1 October 2019).
- McSweeney, D.; Foley, C.; Halton, P.; O’Brien, B. Calibration of an automated grass measurement tool to enhance the precision of grass measurement in pasture based farming systems. In Proceedings of the Teagasc Ag Conference, Tullamore, Ireland, 13 November 2014. [Google Scholar]
- Géoportail. Available online: https://www.geoportail.gouv.fr/ (accessed on 15 October 2019).
- De Vries, D.M.; de Boer, T.A. Methods Used in Botanical Grassland Research in the Netherlands and Their Application; Instituut voor Biologisch en Scheikundig Onderzoek van Landbouwgewassen: Wageningen, The Netherlands, 1959. [Google Scholar]
- Theau, J.P.; Cruz, P.; Fallour, D.; Jouany, E.; Lecloux, E.; Duru, M. Une méthode simplifiée de relevé botanique pour une caractérisation agronomique des prairies permanentes. Fourrages 2010, 201, 19–25. [Google Scholar]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. xgboost: Extreme Gradient Boosting. Available online: https://cran.r-project.org/web/packages/xgboost/xgboost.pdf (accessed on 15 December 2018).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; version 3.6.1. [Google Scholar]
- Forney, G.D. The Viterbi Algorithm. Proc. IEEE 1973, 61, 268–278. [Google Scholar] [CrossRef]
- Witten, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Himmelmann, L. HMM: HMM—Hidden Markov Model. Available online: https://CRAN.R-project.org/package=HMM (accessed on 15 October 2018).
- Pebesma, E.J.; Bivan, R.S. Classes and Methods for Spatial Data in R. Available online: https://github.com/edzer/sp/https://edzer.github.io/sp/ (accessed on 15 October 2019).
- Le, S.; Fosse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat. RFID J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- Bivand, R.; Keitt, T.; Rowlingson, B. rgdal: Bindings for the “Geospatial” Data Abstraction Library. Available online: https://CRAN.R-project.org/package=rgdal (accessed on 15 October 2018).
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. Available online: https://CRAN.R-project.org/package=raster (accessed on 15 October 2018).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression Sage: Thousand Oaks CA. Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 15 October 2018).
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 30 October 2018).
- Schütz, K.E.; Rogers, A.R.; Poulouin, Y.A.; Cox, N.R.; Tucker, C.B. The amount of shade influences the behavior and physiology of dairy cattle. J. Dairy Sci. 2010, 93, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Rook, A.J.; Harvey, A.; Parsons, A.J.; Orr, R.J.; Rutter, S.M. Bite dimensions and grazing movements by sheep and cattle grazing homogeneous perennial ryegrass swards. Appl. Anim. Behav. Sci. 2004, 88, 227–242. [Google Scholar] [CrossRef]
- O’Donnell, T.G.; Walton, G.A. Some observations on the behaviour and hill-pasture utilization of irish cattle. Grass Forage Sci. 1969, 24, 128–133. [Google Scholar] [CrossRef]
- Rutter, S.M.; Orr, R.J.; Yarrow, N.H.; Champion, R.A. Dietary Preference of Dairy Cows Grazing Ryegrass and White Clover. J. Dairy Sci. 2004, 87, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Arave, C.W.; Albright, J.L. Cattle behaviour. J. Dairy Sci. 1981, 64, 1318–1329. [Google Scholar] [CrossRef]
- Laca, E.A. Precision livestock production: Tools and concepts. Rev. Bras. Zootec. 2009, 38, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.W.; Dumont, B.; WallisDeVries, M.F. Utilization of heterogeneous grasslands by domestic herbivores: Theory to management. Ann. Zootech. 1998, 47, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Lefeuvre, J.C.; Leclerc, B. Spatial heterogeneity and agrosystems. In Proceedings of the First International Seminar on Methodology in Landscape Ecological Research and Planning, Roskilde, Sweden; 1984; pp. 45–52. [Google Scholar]
- Feldt, T.; Schlecht, E. Analysis of GPS trajectories to assess spatio-temporal differences in grazing patterns and land use preferences of domestic livestock in southwestern Madagascar. Pastoralism 2016. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, E.; Curran, J.; Mayes, B.; McEvoy, M.; Murphy, J.P.; O’Donovan, M. Restricting dairy cow access time to pasture in early lactation: The effects on milk production, grazing behaviour and dry matter intake. Animal 2011, 5, 1805–1813. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, K.; Lewis, E.; Kennedy, E. Effect of feed allowance at pasture on the lying behaviour of dairy cows. Appl. Anim. Behav. Sci. 2019, 213, 40–46. [Google Scholar] [CrossRef]
- Manning, J.; Cronin, G.; González, L.; Hall, E.; Merchant, A.; Ingram, L. The Behavioural Responses of Beef Cattle (Bos taurus) to Declining Pasture Availability and the Use of GNSS Technology to Determine Grazing Preference. Agriculture 2017, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Acosta, N.; Barreto, N.; Caitano, P.; Marichal, R.; Pedemonte, M.; Oreggioni, J. Research platform for cattle virtual fences. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 February 2020; pp. 797–802. [Google Scholar]
Permanent Grassland | |||
---|---|---|---|
Before Grouping | After Grouping | ||
Structural Characteristics | Trees | None | None |
T1 | T1 | ||
T2 | T2 | ||
T3 | T3 | ||
Hedges | None | None | |
H1 | H1 | ||
H2, H3, H4 | HMS1 | ||
H5 | H5 | ||
H6 | H6 | ||
H7, H8 | Hedges_North noted HN | ||
H9 | H9 | ||
H10 | H10 | ||
Boundaries | None | None | |
PA | PA | ||
F1 | F1 | ||
Slope | Low | Low | |
Moderate | Moderate | ||
Steep | Steep | ||
Soil Moisture | Dry | Dry | |
MS1 | MS1 | ||
MS2 | MS2 | ||
Botanical Classes | Class 1, Class 2 | Class_slope | |
Class 3 | Class 3 | ||
Class 4 | Class 4 | ||
Class 5 | Class 5 | ||
Class 6, 7, 8, 9 | Class_Moist_Area noted Class_MA | ||
Temporary Grassland | |||
Structural Characteristics | Hedges | None | None |
H1 | H1 | ||
H2 | H2 | ||
Boundaries | None | None | |
F1 | F1 | ||
F2, PA | Boundaries_AMS noted Bnd_AMS | ||
F3 | F3 | ||
F4 | F4 | ||
Slope | Low | Absence | |
Moderate, Steep | Presence | ||
Botanical Classes | Class 1 | Class 1 | |
Class 2 | Class 2 | ||
Class 3 | Class 3 |
Effect | Overall | Grazing | Walking | Ruminating Lying | Ruminating Standing | Resting Lying | Resting Standing | ||
---|---|---|---|---|---|---|---|---|---|
Trees | Sign. 1 | *** | *** | *** | *** | *** | *** | *** | |
mean ± se | None | 20.0 a ± 3.7 | 10.6 a ± 2.3 | 1.3 a ± 0.2 | 1.7 a ± 0.6 | 0.4 a ± 0.2 | 1.1 a ± 0.5 | 0.5 a ± 0.2 | |
T1 | 40.5 b ± 8.6 | 14.6 ab ± 4.6 | 1.3 ab ± 0.6 | 7.4 a ± 2.6 | 2.8 bc ± 0.6 | 6.6 a ± 2.6 | 2.6 b ± 0.6 | ||
T2 | 113.9 c ± 7.5 | 41.4 c ± 4.3 | 3.7 c ± 0.5 | 27.6 b ± 2.1 | 3.6 c ± 0.5 | 28.7 b ± 2.2 | 4.9 c ± 0.5 | ||
T3 | 36.7 b ± 6.2 | 19.1 b ± 3.7 | 2.4 bc ± 0.4 | 4.6 a ± 1.7 | 1.9 b ± 0.4 | 2.9 a ± 1.7 | 1.5 b ± 0.4 | ||
Hedges | Sign. 1 | * | * | 0.68 | 0.76 | 0.62 | 0.96 | *** | |
mean ± se | None | 54.6 b ± 4.2 | 22.3 bc ± 2.7 | 2.2 ± 0.3 | 10.4 ± 1.0 | 2.2 ± 0.2 | 9.9 ± 1.0 | 2.7 b ± 0.3 | |
H1 | 54.6 ab ± 6.4 | 23.1 bc ± 3.8 | 2.1 ± 0.4 | 10.9 ± 1.8 | 2.2 ± 0.4 | 9.4 ± 1.9 | 2.7 b ± 0.4 | ||
H5 | 56.3 ab ± 7.7 | 22.6 abc ± 4.3 | 2.5± 0.6 | 10.6 ± 2.3 | 2.1 ± 0.5 | 10.1 ± 2.4 | 2.6 ab ± 0.5 | ||
H6 | 46.2 ab ± 6.4 | 18.4 ab ± 3.7 | 2.0 ± 0.4 | 8.9 ± 1.8 | 1.9 ± 0.4 | 8.9 ± 1.8 | 1.8 ab ± 0.4 | ||
HN | 40.4 a ± 6.5 | 14.7 a ± 3.8 | 1.7 ± 0.4 | 8.9 ± 1.7 | 1.8 ± 0.4 | 8.6 ± 1.7 | 1.4 a ± 0.4 | ||
H9 | 60.3 b ± 6.5 | 26.5 c ± 3.9 | 2.5 ± 0.5 | 10.3 ± 1.8 | 2.6 ± 0.4 | 10.4 ± 1.9 | 2.5 ab ± 0.4 | ||
H10 | 57.3 ab ± 6.6 | 22.4 abc ± 3.9 | 2.5 ± 0.5 | 12.0 ± 1.9 | 2.1 ± 0.4 | 9.9 ± 2.0 | 2.8 b ± 0.4 | ||
Boundaries | Sign. 1 | 0.16 | *** | 0.62 | 0.85 | 0.80 | 0.95 | 0.17 | |
mean ± se | None | 49.3 a ± 5.4 | 24.6 b ± 2.5 | 2.2 ± 0.3 | 10.4 ± 1.0 | 2.2 ± 0.2 | 9.9 ± 1.0 | 2.2 ± 0.3 | |
PA | 43.0 a ± 10.4 | 21.7 ab ± 4.6 | 1.7 ± 0.6 | 9.4 ± 2.8 | 2.3 ± 0.6 | 9.6 ± 2.8 | 2.3 ± 0.7 | ||
F1 | 37.5 a ± 9.4 | 18.0 a ± 4.1 | 1.9 ± 0.6 | 9.4 ± 2.3 | 1.9 ± 0.5 | 9.2 ± 2.4 | 1.4 ± 0.6 | ||
Slope | Sign. 1 | ** | *** | † | 0.51 | 0.99 | 0.34 | 0.30 | |
mean ± se | Low | 47.9 a ± 4.7 | 18.6 a ± 3.2 | 1.9 a ± 0.3 | 10.2 ± 1.0 | 2.2 ± 0.2 | 9.6 ± 1.0 | 2.4 ± 0.3 | |
Moderate | 53.6 ab ± 5.4 | 21.3 ab ± 3.5 | 2.1 a ± 0.3 | 10.8 ± 1.3 | 2.2 ± 0.3 | 10.9 ± 1.3 | 2.7 ± 0.4 | ||
Steep | 56.8 b ± 5.9 | 24.4 b ± 3.6 | 2.5 a ± 0.4 | 11.5 ± 1.5 | 2.2 ± 0.3 | 10.8 ± 1.5 | 2.5 ± 0.4 | ||
Soil moisture | Sign. 1 | ** | *** | 0.75 | 0.20 | 0.53 | 0.66 | *** | |
mean ± se | Dry | 51.3 ab ± 4.2 | 19.7 a ± 2.9 | 2.2 ± 0.3 | 10.3 ± 1.0 | 2.2 ± 0.2 | 9.9 ± 1.0 | 2.6 b ± 0.3 | |
MS1 | 43.1 a ± 6.1 | 16.2 a ± 3.8 | 2.1 ± 0.4 | 9.2 ± 1.4 | 2.0 ± 0.3 | 9.0 ± 1.4 | 1.5 a ± 0.4 | ||
MS2 | 63.9 b ± 7.1 | 28.3 b ± 7.1 | 2.5 a ± 0.5 | 12.6 ± 2.1 | 2.0 ± 0.4 | 9.6 ± 2.1 | 3.0 b ± 0.5 | ||
Botanical Classes | Sign. 1 | * | *** | * | 0.42 | 0.27 | 0.74 | † | |
mean ± se | Class 4 | 32.6 a ± 6.6 | 19.5 a ± 3.2 | 2.0 ab ± 0.3 | 10.2 ± 1.2 | 2.0 ± 0.3 | 9.3 ± 1.2 | 2.1 a ± 0.3 | |
Class 3 | 42.1 b ± 7.8 | 26.3 b ± 3.7 | 2.7 b ± 0.4 | 11.9 ± 1.5 | 2.1 ± 0.3 | 10.7 ± 1.5 | 2.0 a ± 0.4 | ||
Class 5 | 34.5 ab ± 6.9 | 18.2 a ± 3.3 | 1.7 a ± 0.3 | 9.8 ± 1.2 | 2.5 ± 0.3 | 10.3 ± 1.2 | 2.7 a ± 0.4 | ||
Class_MA | 36.7 ab ± 7.4 | 21.4 ab ± 3.5 | 1.9 ab ± 0.4 | 9.1 ± 1.3 | 2.0 ± 0.3 | 9.1 ± 1.3 | 2.7 a ± 0.4 | ||
Class_slp | 33.6 ab ± 8.6 | 21.8 ab ± 4.1 | 2.5 ab ± 0.4 | 10.0 ± 1.7 | 2.1 ± 0.4 | 9.8 ± 1.7 | 2.4 a ± 0.4 |
Effect | Overall | Grazing | Walking | Ruminating Lying | Ruminating Standing | Resting Lying | Resting Standing | ||
---|---|---|---|---|---|---|---|---|---|
Hedges | Sign. 1 | * | * | 0.27 | 0.37 | 0.39 | 0.31 | 0.22 | |
mean ± se | None | 16.8 b ± 2.2 | 11.6 b ± 1.4 | 0.6 ± 0.1 | 1.9 ± 0.4 | 0.7 ± 0.2 | 0.8 ± 0.2 | 0.9 ± 0.2 | |
H1 | 14.3 ab ± 3.9 | 11.4 ab ± 2.2 | 0.5 ± 0.2 | 1.3 ± 0.7 | 0.8 ± 0.4 | 0.4 ± 0.3 | 0.3 ± 0.4 | ||
H2 | 6.1 a ± 4.7 | 4.5 a ± 2.7 | 0.1 ± 0.3 | 0.7 a ± 0.9 | 0.2 ± 0.4 | 0.8 ± 0.2 | 0.4 ± 0.5 | ||
Boundaries | Sign. 1 | * | 0.23 | 0.46 | 0.22 | ** | 0.24 | ** | |
mean ± se | None | 12.8 ab ± 2.1 | 9.4 ± 1.5 | 0.5 ± 0.1 | 1.9 ± 0.4 | 0.5 a ± 0.2 | 0.7 ± 0.2 | 0.5 a ± 0.2 | |
F1 | 7.5 a ± 3.4 | 7.1 ± 2.5 | 0.4 ± 0.2 | 0.7 ± 0.6 | 0.3 a ± 0.3 | 0.4 ± 0.3 | 0.5 a ± 0.3 | ||
Bnd_AMS | 9.9 ab ± 3.9 | 7.1 ± 2.9 | 0.7 ± 0.2 | 2.1 ± 0.7 | 0.4 a ± 0.3 | 0.8 ± 0.3 | 0.7 a ± 0.3 | ||
F3 | 11.3 ab ± 5.6 | 10.1 ± 4.1 | 0.5 ± 0.4 | 1.1 ± 1.2 | 0.6 ab ± 0.5 | 0.4 ± 0.6 | 0.5 ab ± 0.6 | ||
F4 | 20.6 b ± 4.6 | 13.1 ± 3.3 | 0.9 ± 0.3 | 2.8 ± 0.9 | 1.9 b ± 0.4 | 1.5 ± 0.4 | 2.2 b ± 0.4 | ||
Slope | Sign. 1 | 0.96 | 0.77 | 0.90 | 0.94 | 0.86 | 0.64 | 0.62 | |
mean ± se | Absence | 12.5 ± 3.0 | 9.0 ± 1.6 | 0.5 ± 0.1 | 1.7 ± 0.4 | 0.7 ± 0.3 | 0.8 ± 0.2 | 2.4 ± 0.3 | |
Presence | 12.6 ± 4.5 | 9.5 ± 2.0 | 0.5 ± 0.2 | 1.7 ± 0.5 | 0.7 ± 0.2 | 0.7 ± 0.2 | 2.7 ± 0.4 | ||
Botanical Classes | Sign. 1 | * | * | * | * | 0.45 | 0.57 | 0.22 | |
mean ± se | Class 2 | 11.7 a ± 2.4 | 9.1 ab ± 1.4 | 0.4 ab ± 0.1 | 1.2 ± 0.3 | 0.7 ± 0.1 | 0.8 ± 0.2 | 0.8 ± 0.2 | |
Class 1 | 6.9 a ± 4.4 | 5.2 a ± 2.7 | 0.2 a ± 0.3 | 1.2 ± 0.8 | 0.9 ± 0.4 | 0.4 ± 0.4 | 0.7 ± 0.5 | ||
Class 3 | 18.6 b ± 3.9 | 13.1 b ± 2.1 | 0.9 b ± 0.2 | 2.7 ± 0.5 | 1.0 ± 0.3 | 0.7 ± 0.3 | 1.3 ± 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaboff, L.; Couvreur, S.; Madouasse, A.; Roig-Pons, M.; Aubin, S.; Massabie, P.; Chauvin, A.; Bédère, N.; Plantier, G. Use of Predicted Behavior from Accelerometer Data Combined with GPS Data to Explore the Relationship between Dairy Cow Behavior and Pasture Characteristics. Sensors 2020, 20, 4741. https://doi.org/10.3390/s20174741
Riaboff L, Couvreur S, Madouasse A, Roig-Pons M, Aubin S, Massabie P, Chauvin A, Bédère N, Plantier G. Use of Predicted Behavior from Accelerometer Data Combined with GPS Data to Explore the Relationship between Dairy Cow Behavior and Pasture Characteristics. Sensors. 2020; 20(17):4741. https://doi.org/10.3390/s20174741
Chicago/Turabian StyleRiaboff, Lucile, Sébastien Couvreur, Aurélien Madouasse, Marie Roig-Pons, Sébastien Aubin, Patrick Massabie, Alain Chauvin, Nicolas Bédère, and Guy Plantier. 2020. "Use of Predicted Behavior from Accelerometer Data Combined with GPS Data to Explore the Relationship between Dairy Cow Behavior and Pasture Characteristics" Sensors 20, no. 17: 4741. https://doi.org/10.3390/s20174741