An Ore Image Segmentation Method Based on RDU-Net Model
Abstract
:1. Introduction
2. Preprocessing and Production of Data Sets
2.1. Image Preprocessing
2.2. Production of Data Sets
3. The Establishment of RDU-Net
3.1. DUNet Model
3.2. RDU-Net Model
3.3. Algorithm Flowchart
4. Experimental Results and Discussions
4.1. Evaluation Criteria
4.2. Evaluation of Model Segmentation Results
4.2.1. Residual Structures are Located in Different Convolutional Layers
4.2.2. Comparison with Other Models
4.3. Evaluation of Contour Extraction Results
5. Conclusions
6. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, G.Y.; Liu, G.Z.; Zhu, H.; Qiu, B. Ore image thresholding using bi-neighbourhood Otsu’s approach. Electron. Lett. 2010, 46, 1666–1668. [Google Scholar] [CrossRef]
- Zhan, Y.T.; Zhang, G.Y. An Improved OTSU Algorithm Using Histogram Accumulation Moment for Ore Segmentation. Symmetry 2019, 11, 431. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, S.C.; You, Y.C.; Zhang, S.Y. Segmentation method for personalized American car plate based on clustering analysis. J. Zhejiang Univ. Sci. B 2012, 46, 2155–2159. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Wang, Y.Z.; Ma, L.C.; Zeng, H.; Huang, B. Mineral image segmentation method based on watershed and morphological reconstruction. Internet Things Technol. 2017, 7, 89–91. (In Chinese) [Google Scholar]
- Fang, T.; Zhang, Y.P. An Ore Image Segmentation Method Based on Identification. Softw. Tribune 2016, 15, 215–217. (In Chinese) [Google Scholar]
- Tapkın, S.; Zakeri, H.; Topal, A.; Nejad, F.M.; Khodaii, A.; Şengöz, B. A Brief Review and a New Automatic Method for Interpretation of Polypropylene Modified Bitumen Based on Fuzzy Radon Transform and Watershed Segmentation. Arch. Comput. Methods Eng. 2019, 27, 1–31. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Yang, J.G.; Su, X.L.; Ding, L.H.; Wang, Y.L. Multi-scale image segmentation of coal piles on a belt based on the Hessian matrix. Particuology 2013, 11, 549–555. [Google Scholar] [CrossRef]
- Dong, K.; Jiang, D. Automated Estimation of Ore Size Distributions Based on Machine Vision. Lect. Notes Electr. Eng. 2014, 238, 1125–1131. [Google Scholar]
- Zhang, G.Y.; Liu, G.Z.; Zhu, H. Segmentation algorithm of complex ore images based on templates transformation and reconstruction. Int. J. Miner. Metall. Mater. 2011, 18, 385–389. [Google Scholar] [CrossRef]
- Yang, D.D.; Wang, W.X.; Liao, Y.P. Rock Particle Image Segmentation on Multi-scale and Normalized Cut. Si Chuan Da Xue Xue Bao 2015, 47, 118–124. (In Chinese) [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: New York, NY, USA, 2015; pp. 234–241. [Google Scholar]
- Badrinarayanan, V.; Badrinarayanan, V.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. [Google Scholar]
- Shaaban, K.M.; Omar, N.M. Region-based Deformable Net for automatic color image segmentation. Image Vis. Comput. 2009, 27, 1504–1514. [Google Scholar] [CrossRef]
- Xu, J.C.; Jin, G.Q.; Zhu, T.Y.; Yu, F.F.; Guo, J.; Jin, Y.; Zhu, C.A. Segmentation of Rock Images Based on U-Net. Ind. Control Comput. 2018, 31, 98–99. (In Chinese) [Google Scholar]
- Casella, A.; Moccia, S.; Frontoni, E.; Paladini, D.; De Momi, E.; Mattos, L.S. Inter-foetus Membrane Segmentation for TTTS Using Adversarial Networks. Ann. Biomed. Eng. 2019, 48, 848–859. [Google Scholar] [CrossRef] [Green Version]
- Miao, X.; Wang, J.; Wang, Z.; Sui, Q.; Gao, Y.; Jiang, P. Automatic Recognition of Highway Tunnel Defects Based on an Improved U-net Model. IEEE Sens. J. 2019, 19, 11413–11423. [Google Scholar] [CrossRef]
- Dash, M.; Londhe, N.D.; Ghosh, S.; Semwal, A.; Sonawane, R.S. PsLSNet: Automated psoriasis skin lesion segmentation using modified U-Net-based fully convolutional network. Biomed. Signal Process. Control 2019, 52, 226–237. [Google Scholar] [CrossRef]
- Sun, J.; Chen, W.; Peng, S.; Liu, B. DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation. J. Med. Syst. 2019, 43, 221. [Google Scholar] [CrossRef]
- Jeppesen, J.H.; Jacobsen, R.; Inceoğlu, F.; Toftegaard, T.S. A cloud detection algorithm for satellite imagery based on deep learning. Remote Sens. Environ. 2019, 229, 247–259. [Google Scholar] [CrossRef]
- Liu, Z.; Song, Y.-Q.; Sheng, V.S.; Wang, L.; Jiang, R.; Zhang, X.; Yuan, D. Liver CT sequence segmentation based with improved U-Net and graph cut. Expert Syst. Appl. 2019, 126, 54–63. [Google Scholar] [CrossRef]
- Fang, Y.; Li, Y.; Tu, X.; Tan, T.; Wang, X.; Li, Y. Face completion with Hybrid Dilated Convolution. Signal Process. Image Commun. 2020, 80, 115664. [Google Scholar] [CrossRef]
- Hong, J.; Park, B.-Y.; Lee, M.J.; Chung, C.-S.; Cha, J.; Park, H. Two-step deep neural network for segmentation of deep white matter hyperintensities in migraineurs. Comput. Methods Progr. Biomed. 2019, 183, 105065. [Google Scholar] [CrossRef] [PubMed]
- Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Netw. 2020, 121, 74–87. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Ruan, W.; Lin, C.; Chen, D. Diagnostic and Gradation Model of Osteoporosis Based on Improved Deep U-Net Network. J. Med. Syst. 2019, 44, 15. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Chen, Y.; Hung, S.-C.; Zhang, X.; Lin, W.; Shen, D. Submillimeter MR fingerprinting using deep learning–based tissue quantification. Magn. Reson. Med. 2019, 84, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Meng, Z.; Pham, T.D.; Chen, Q.; Wei, L.; Su, R. DUNet: A deformable network for retinal vessel segmentation. Knowl.-Based Syst. 2019, 178, 149–162. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
Contracting Path | Expanding Path | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Layer Number | Layer (Type) | Output Shape | Filter Size | Layer Number | Layer (Type) | Output Shape | Filter Size | ||||
L1 | Input | [1,48,48] | L16 | Upsample-1 | [128,6,6] | 2 × 2 | |||||
L2 | Conv-1+BN+ReLU | [16,48,48] | 3 × 3 | L17 | Conv-15+BN+ReLU | [64,6,6] | 3 × 3 | ||||
L3 | Conv-2+BN+ReLU | [16,48,48] | 3 × 3 | L18 | Conv-16+BN+ReLU | [64,6,6] | 3 × 3 | ||||
L4 | MaxPool-1 | [16,24,24] | 2 × 2 | L19 | Upsample-2 | [64,12,12] | 2 × 2 | ||||
L5 | Conv-3+Conv-4+DeformConv-1+BN+ReLU | Conv7+BN | [32,24,24] | 3 × 3 | 1 × 1 | L20 | Conv-17+BN+ReLU | [32,12,12] | 3 × 3 | ||
L6 | Conv-5+Conv-6+DeformConv-2+BN+ReLU | Conv7+BN | [32,24,24] | 3 × 3 | 1 × 1 | L21 | Conv-18+BN+ReLU | [32,12,12] | 3 × 3 | ||
L7 | MaxPool-2 | [32,12,12] | 2 × 2 | L22 | Upsample-3 | [32,24,24] | 2 × 2 | ||||
L8 | Conv-7+Conv-8+DeformConv-3+BN+ReLU | Conv7+BN | [64,12,12] | 3 × 3 | 1 × 1 | L23 | Conv-19+Conv-20+DeformConv-5+BN+ReLU | Conv7+BN | [16,24,24] | 3 × 3 | 1 × 1 |
L9 | Conv-9+Conv-10+DeformConv-4+BN+ReLU | Conv7+BN | [64,12,12] | 3 × 3 | 1 × 1 | L24 | Conv-21+Conv-22+DeformConv-6+BN+ReLU | Conv7+BN | [16,24,24] | 3 × 3 | 1 × 1 |
L10 | MaxPool-3 | [64,6,6] | 2 × 2 | L25 | Upsample-4 | [16,48,48] | 2 × 2 | ||||
L11 | Conv-11+BN+ReLU | [128,6,6] | 3 × 3 | L26 | Conv-23+Conv-24+DeformConv-7+BN+ReLU | Conv7+BN | [16,48,48] | 3 × 3 | 1 × 1 | ||
L12 | Conv-12+BN+ReLU | [128,6,6] | 3 × 3 | L27 | Conv-24+Conv-25+DeformConv-8+BN+ReLU | Conv7+BN | [16,48,48] | 3 × 3 | 1 × 1 | ||
L13 | MaxPool-4 | [128,3,3] | 2 × 2 | L28 | Output = Conv-26 | [1,48,48] | 1 × 1 | ||||
L14 | Conv-13+BN+ReLU | [128,3,3] | 3 × 3 | ||||||||
L15 | Conv-14+BN+ReLU | [128,3,3] | 3 × 3 |
AUC | ACC | TNR | TPR | PPV | JS | FI | Test Time (s) | |
---|---|---|---|---|---|---|---|---|
RDU-Net_res1 | 0.9848 | 0.9305 | 0.9372 | 0.9240 | 0.9392 | 0.9305 | 0.9315 | 20.66 |
RDU-Net_res2 | 0.9820 | 0.9244 | 0.9250 | 0.9238 | 0.9281 | 0.9244 | 0.9259 | 20.58 |
RDU-Net_res3 | 0.9902 | 0.9454 | 0.9623 | 0.9204 | 0.9430 | 0.9454 | 0.9316 | 20.16 |
AUC | ACC | TNR | TPR | PPV | JS | FI | Test Time (s) | |
---|---|---|---|---|---|---|---|---|
U-Net | 0.9265 | 0.8229 | 0.8815 | 0.7706 | 0.8792 | 0.8229 | 0.8213 | 11.46 |
DUNet | 0.9513 | 0.9012 | 0.8959 | 0.9103 | 0.8371 | 0.9012 | 0.8722 | 20.30 |
RDU-Net | 0.9902 | 0.9454 | 0.9623 | 0.9204 | 0.9430 | 0.9454 | 0.9316 | 20.16 |
Model | Image | CM | OS | US | Total | Error (%) |
---|---|---|---|---|---|---|
U-Net | Image1 | 161 | 7 | 19 | 187 | 13.90% |
Image2 | 196 | 10 | 17 | 223 | 12.10% | |
Image3 | 93 | 5 | 7 | 105 | 11.42% | |
Mean | 12.47% | |||||
DUNet | Image1 | 177 | 13 | 2 | 192 | 7.81% |
Image2 | 199 | 16 | 7 | 222 | 10.36% | |
Image3 | 101 | 6 | 3 | 110 | 8.18% | |
Mean | 8.78% | |||||
RDU-Net | Image1 | 183 | 3 | 2 | 188 | 2.65% |
Image2 | 227 | 5 | 3 | 235 | 3.40% | |
Image3 | 109 | 1 | 2 | 112 | 2.67% | |
Mean | 2.90% |
Image1 | Image2 | Image3 | |
---|---|---|---|
p-value | 0.26 | 0.34 | 0.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; Liu, X.; Le, B.T.; Ji, Z.; Sun, X. An Ore Image Segmentation Method Based on RDU-Net Model. Sensors 2020, 20, 4979. https://doi.org/10.3390/s20174979
Xiao D, Liu X, Le BT, Ji Z, Sun X. An Ore Image Segmentation Method Based on RDU-Net Model. Sensors. 2020; 20(17):4979. https://doi.org/10.3390/s20174979
Chicago/Turabian StyleXiao, Dong, Xiwen Liu, Ba Tuan Le, Zhiwen Ji, and Xiaoyu Sun. 2020. "An Ore Image Segmentation Method Based on RDU-Net Model" Sensors 20, no. 17: 4979. https://doi.org/10.3390/s20174979