AiRobSim: Simulating a Multisensor Aerial Robot for Urban Search and Rescue Operation and Training
Abstract
:1. Introduction
2. Background Review
2.1. Search and Rescue Robots
2.2. Ground-Penetrating Radar in Search and Rescue
2.3. Robot Simulation in Virtual Environment
2.4. Knowledge Gaps
3. Robot Configuration
4. Robot Simulation Framework
4.1. Disaster Scenario Development
4.2. Robot Control
4.3. Integration of Multimodal Simulation Data
5. Experimentation and Evaluation
5.1. Experiment Setup
5.2. Experiment Results
- (1)
- Validation of Hypothesis 1
- (2)
- Validation of Hypothesis 2
5.3. Analysis of Recorded Simulation Data
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Comfort, L.K. Self Organization in Disaster Response: The Great Hanshin, Japan Earthquake of January 17, 1995; Natural Hazards Center: Boulder, CO, USA, 1996. [Google Scholar]
- Petinaux, B.; Macintyre, A.G.; Barbera, J.A. Confined space medicine and the medical management of complex rescues: A case series. Disaster Med. Public 2014, 8, 20–29. [Google Scholar] [CrossRef]
- Michael, N.; Shen, S.J.; Mohta, K.; Mulgaonkar, Y.; Kumar, V.; Nagatani, K.; Okada, Y.; Kiribayashi, S.; Otake, K.; Yoshida, K.; et al. Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J. Field Robot. 2012, 29, 832–841. [Google Scholar] [CrossRef]
- Okada, Y.; Nagatani, K.; Yoshida, K.; Tadokoro, S.; Yoshida, T.; Koyanagi, E.J.J.O.F.R. Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning. J. Field Robot. 2011, 28, 875–893. [Google Scholar] [CrossRef]
- Murphy, R.R. Trial by fire-activities of the rescue robots at the World Trade Center from 11–21 September 2001. IEEE Robot. Autom. Mag. 2004, 11, 50–61. [Google Scholar] [CrossRef]
- Rudol, P.; Doherty, P. Human body detection and geolocalization for UAV search and rescue missions. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 3171–3178. [Google Scholar]
- Ezequiel, C.A.F.; Cua, M.; Libatique, N.C.; Tangonan, G.L.; Alampay, R.; Labuguen, R.T.; Favila, C.M.; Honrado, J.L.E.; Canos, V.; Devaney, C.; et al. UAV aerial imaging applications for post-disaster assessment, environmental management and infrastructure development. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems, Orlando, FL, USA, 27–30 May 2014; IEEE: New York, NY, USA, 2014; pp. 274–283. [Google Scholar]
- Recchiuto, C.T.; Sgorbissa, A. Post-disaster assessment with unmanned aerial vehicles: A survey on practical implementations and research approaches. J. Field Robot. 2018, 35, 459–490. [Google Scholar] [CrossRef]
- Hawkes, E.W.; Blumenschein, L.H.; Greer, J.D.; Okamura, A.M. A soft robot that navigates its environment through growth. Sci. Robot. 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Situational Awareness: Catastrophically Important to First Responder Safety. Available online: https://www.samatters.com/situational-awareness-catastrophically-important-to-first-responder-safety/ (accessed on 1 April 2019).
- Heilig, A. The Search for and Location of Inhomogeneities in Seasonal Snowpacks Utilizing Ground-Penetrating Radar. Ph.D. Thesis, University of Heidelberg, Heidelberg, Germany, 2009. [Google Scholar]
- Instanes, A.; Lønne, I.; Sandaker, K. Location of avalanche victims with ground-penetrating radar. Cold Reg. Sci. Technol. 2004, 38, 55–61. [Google Scholar] [CrossRef]
- Fruehauf, F.; Heilig, A.; Schneebeli, M.; Fellin, W.; Scherzer, O. Experiments and algorithms to detect snow avalanche victims using airborne ground-penetrating radar. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2240–2251. [Google Scholar] [CrossRef]
- Haltmeier, M.; Richard, K.; Scherzer, O. Computer aided location of avalanche victims with ground penetrating radar mounted on a helicopter. In Proceedings of the 30th Workshop of the Austrian Association for Pattern Recognition, Obergurgl, Austria, 2–3 March 2006; p. 209. [Google Scholar]
- Tanzi, T.; Chandra, M.; Isnard, J.; Camara, D.; Sebastien, O.; Harivelo, F. Towards “Drone-Born” Disaster Management; ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences: Prague, Czech Republic, 2016; Volume III-8, pp. 181–189. [Google Scholar]
- Murphy, R.R. Fixed-and rotary-wing uavs at hurricane Katrina. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 15–19. [Google Scholar]
- Pralio, B.; Guglieri, G.; Quagliotti, F. Design and performance analysis of a micro aerial vehicle concept. In Proceedings of the 2nd AIAA" Unmanned Unlimited" Conference and Workshop & Exhibit, San Diego, CA, USA, 15–18 September 2003; p. 6546. [Google Scholar]
- Achtelik, M.; Doth, K.-M.; Gurdan, D.; Stumpf, J. Design of a multi rotor MAV with regard to efficiency, dynamics and redundancy. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Minneapolis, MN, USA, 13–16 August 2012; p. 4779. [Google Scholar]
- Nonami, K. Prospect and recent research & development for civil use autonomous unmanned aircraft as UAV and MAV. J. Syst. Des. Dyn. 2007, 1, 120–128. [Google Scholar]
- Arnold, R.D.; Yamaguchi, H.; Tanaka, T. Search and rescue with autonomous flying robots through behavior-based cooperative intelligence. J. Int. Humanit. Action 2018, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Kochersberger, K.; Kroeger, K.; Krawiec, B.; Brewer, E.; Weber, T. Post-disaster remote sensing and sampling via an autonomous helicopter. J. Field Robot. 2014, 31, 510–521. [Google Scholar] [CrossRef]
- Japan Earthquake: Robots Help Search for Survivors. Available online: https://spectrum.ieee.org/automaton/robotics/industrial-robots/japan-earthquake-robots-help-search-for-survivors (accessed on 19 August 2020).
- Japan Sends Robot into Fukushima Reactor. Available online: https://www.telegraph.co.uk/news/worldnews/asia/japan/japan-earthquake-and-tsunami-in/8465495/Japan-sends-robot-into-Fukushima-reactor.html (accessed on 1 April 2019).
- Liu, Y.G.; Liu, G.J. Interaction Analysis and online tip-over avoidance for a reconfigurable tracked mobile modular manipulator negotiating slopes. IEEE ASME Trans. Mechatron. 2010, 15, 623–635. [Google Scholar] [CrossRef]
- Ito, K.; Maruyama, H. Semi-autonomous serially connected multi-crawler robot for search and rescue. Adv. Robot. 2016, 30, 489–503. [Google Scholar] [CrossRef]
- Ito, K.; Murai, R. Snake-like robot for rescue operations-proposal of a simple adaptive mechanism designed for ease of use. Adv. Robot. 2008, 22, 771–785. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Zeng, Z.; Liu, F. Advanced signal processing for vital sign extraction with applications in uwb radar detection of trapped victims in complex environments. IEEE J. Stars 2014, 7, 783–791. [Google Scholar] [CrossRef]
- Yarovoy, A.G.; Ligthart, L.P.; Matuzas, J.; Levitas, B. UWB radar for human being detection. IEEE Aerosp. Electron. Syst. Mag. 2006, 21, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Hamp, Q.; Zhang, R.; Chen, L.; Gorgis, O.; Ostertag, T.; Loschonsky, M.; Reindl, L. New technologies for the search of trapped victims. Ad. Hoc. Netw. 2014, 13, 69–82. [Google Scholar] [CrossRef]
- Machguth, H.; Eisen, O.; Paul, F.; Hoelzle, M. Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Arcone, S.; Delaney, A. GPR images of hidden crevasses in Antarctica. In Proceedings of the 8th International Conference on Ground Penetrating Radar, Gold Coast, Australia, 27 April 2000; Volume 4084. [Google Scholar]
- Shamshiri, R.R.; Hameed, I.A.; Pitonakova, L.; Weltzien, C.; Balasundram, S.K.; Yule, I.J.; Grift, T.E.; Chowdhary, G. Simulation software and virtual environments for acceleration of agricultural robotics: Features highlights and performance comparison. Int. J. Agric. Biol. Eng. 2018, 11, 15–31. [Google Scholar] [CrossRef]
- Couceiro, M.S.; Rocha, R.P.; Ferreira, N.M.F. A novel multi-robot exploration approach based on Particle Swarm Optimization algorithms. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; pp. 327–332. [Google Scholar]
- Hayat, S.; Yanmaz, E.; Brown, T.X.; Bettstetter, C. Multi-objective UAV path planning for search and rescue. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands, Singapore, 29 May–3 June 2017; pp. 5569–5574. [Google Scholar]
- Yuan, G.L.; Li, S.Y.; Wang, H.S.; Huang, D. Lateral balance recovery of quadruped robot on rough terrains. Lect. Notes Electr. En. 2017, 399, 411–421. [Google Scholar] [CrossRef]
- Uslu, E.; Cakmak, F.; Altuntas, N.; Marangoz, S.; Amasyali, M.F.; Yavuz, S. An architecture for multi-robot localization and mapping in the Gazebo/Robot operating System simulation environment. Simul. T Soc. Mod. Sim. 2017, 93, 771–780. [Google Scholar] [CrossRef]
- Ding, S.; Ouyang, X.P.; Fan, B.Q.; Yang, H.Y.; Gong, G.F. Dynamic simulation of a hydraulic exoskeleton robot based on virtual prototyping. In Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12–15 July 2016; pp. 1479–1484. [Google Scholar]
- Oviedo-Trespalacios, O.; Hague, M.M.; King, M.; Washington, S. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers. Accid. Anal. Prev. 2017, 101, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Bambakidis, N.C.; Selman, W.R.; Sloan, A.E. Surgical rehearsal platform: Potential uses in microsurgery. Neurosurgery 2013, 73, 122–126. [Google Scholar] [CrossRef]
- Cherpillod, A.; Mintchev, S.; Floreano, D. Embodied flight with a drone. In Proceedings of the 2019 Third IEEE International Conference on Robotic Computing, Naples, Italy, 25–27 February 2019; pp. 386–390. [Google Scholar] [CrossRef]
- Craighead, J.; Gutierrez, R.; Burke, J.; Murphy, R. Validating the search and rescue game environment as a robot simulator by performing a simulated anomaly detection task. In Proceedings of the 2008 Ieee/Rsj International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; Volume 1–3, pp. 2289–2295. [Google Scholar] [CrossRef]
- Matrice 200. Available online: https://www.dji.com/matrice-200-series-v2?site=brandsite&from=nav (accessed on 12 July 2020).
- BeiDou. Available online: https://en.wikipedia.org/wiki/BeiDou (accessed on 12 July 2020).
- Inertial Measurement Units (IMU). Available online: https://www.analog.com/en/products/sensors-mems/inertial-measurement-units.html# (accessed on 12 July 2020).
- Zenmuse X7. Available online: https://www.dji.com/zenmuse-x7?site=brandsite&from=nav (accessed on 12 July 2020).
- Our Past, Present and Future: GPR Antennas. Available online: https://www.geophysical.com/antennas (accessed on 12 July 2020).
- Hu, D.; Li, S.; Chen, J.; Kamat, V.R. Detecting, locating, and characterizing voids in disaster rubbles for search and rescue. Adv. Eng. Inf. 2019, 42. [Google Scholar] [CrossRef]
- Li, S.; Cai, H.B.; Abraham, D.M.; Mao, P. Estimating features of underground utilities: Hybrid GPR/GPS approach. J. Comput. Civ. Eng. 2016, 30. [Google Scholar] [CrossRef]
- Yuan, C.X.; Li, S.; Cai, H.B.; Kamat, V.R. GPR signature detection and decomposition for mapping buried utilities with complex spatial configuration. J. Comput. Civ. Eng. 2018, 32. [Google Scholar] [CrossRef]
- Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. RotorS—A modular gazebo MAV simulator framework. In Robot Operating System (ROS): The Complete Reference (Volume 1); Koubaa, A., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 1, pp. 595–625. [Google Scholar]
- Rodríguez, H.; Donner, W.; Trainor, J.E. Handbook of Disaster Research; Springer: New York, NY, USA, 2006. [Google Scholar]
- SAR Field Search Methods. Available online: https://kyem.ky.gov/Who%20We%20Are/Documents/.SAR%20Field%20Search%20Methods.pdf (accessed on 10 July 2020).
- Lei, W.; Hou, F.; Xi, J.; Tan, Q.; Xu, M.; Jiang, X.; Liu, G.; Gu, Q. Automatic hyperbola detection and fitting in GPR B-scan image. Autom. Constr. 2019, 106, 102839. [Google Scholar] [CrossRef]
Scene #1 | Scene #2 | ||||
---|---|---|---|---|---|
Picture | |||||
Purpose | Training | Formal test | |||
1st | 2nd | 3rd | |||
Number of collapses | A-frame | 1 | 1 | 1 | 1 |
V-shape | 1 | 1 | 1 | 2 | |
Pancake | 1 | 1 | 0 | 1 | |
Lean-to | 0 | 1 | 2 | 1 | |
No-void | 2 | 1 | 1 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Li, S.; Liu, D.; Li, X. AiRobSim: Simulating a Multisensor Aerial Robot for Urban Search and Rescue Operation and Training. Sensors 2020, 20, 5223. https://doi.org/10.3390/s20185223
Chen J, Li S, Liu D, Li X. AiRobSim: Simulating a Multisensor Aerial Robot for Urban Search and Rescue Operation and Training. Sensors. 2020; 20(18):5223. https://doi.org/10.3390/s20185223
Chicago/Turabian StyleChen, Junjie, Shuai Li, Donghai Liu, and Xueping Li. 2020. "AiRobSim: Simulating a Multisensor Aerial Robot for Urban Search and Rescue Operation and Training" Sensors 20, no. 18: 5223. https://doi.org/10.3390/s20185223