Interdigitated and Wave-Shaped Electrode-Based Capacitance Sensor for Monitoring Antibiotic Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of IWE Using a Microbial Culture Dish
2.2. Antimicrobial Susceptibility Testing
2.3. Electrical Capacitance Monitoring
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Upadhyay, R.K. Emergence of drug resistance in microbes, its dissemination and target modification of antibiotics: A life threatening problem to human society. Int. J. Pharm. Biol. Res. 2011, 2, 110–216. [Google Scholar]
- Mai, B.; Wang, X.; Liu, Q.; Leung, A.W.; Wang, X.; Xu, C.; Wang, P. The Antibacterial Effect of Sinoporphyrin Sodium Photodynamic Therapy on Staphylococcus aureus Planktonic and Biofilm Cultures. Lasers Surg. Med. 2010, 9, 1579–1590. [Google Scholar]
- Hempel, K.; Pané-Farré, J.; Otto, A.; Sievers, S.; Hecker, M.; Becher, D. Quantitative Cell Surface Proteome Profiling for SigB-Dependent Protein Expression in the Human Pahogen Staphylococcus aureus via Biotinylation Approach. J. Proteome Res. 2010, 9, 1579–1590. [Google Scholar] [CrossRef] [PubMed]
- Abeyrathne, C.D.; Huynh, D.H.; Mcintire, T.W.; Nguyen, T.C.; Nasr, B.; Zantomio, D.; Chana, G.; Abbott, I.; Choong, P.; Catton, M.; et al. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus. Analyst 2016, 141, 1922–1929. [Google Scholar] [CrossRef] [PubMed]
- Harada, D.; Nakaminami, H.; Miyajima, E.; Sugiyama, T.; Sasai, N.; Kitamura, Y.; Tamura, T.; Kawakubo, T.; Noguchi, N. Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA. J. Infect. Chemother. 2018, 24, 563–569. [Google Scholar] [CrossRef]
- Gill, S.R.; Fouts, D.E.; Archer, G.L.; Mongodin, E.F.; Devoy, R.T.; Ravel, J.; Paulsen, I.T.; Kolonay, J.F.; Brinkac, L.; Beanan, M.; et al. Insights on Evolution of Virulence and Resistance from the Complete Genome Analysis of an Early Methicillin-Resistant Staphylococcus aureus Strain and a Biofilm-Producing Methicillin-Resistant Staphylococcus epidermidis Strain. J. Bacteriol. 2005, 187, 2426–2438. [Google Scholar] [CrossRef] [Green Version]
- Kubo, I.; Kajiya, M.; Aramaki, N.; Furutani, S. Detection of Salmonella Enterica in Egg Yolk by PCR on a Microfluidic Disc Device Using Immunomagnetic Beads. Sensors 2020, 20, 1060. [Google Scholar] [CrossRef] [Green Version]
- Nabti, L.Z.; Sahli, F.; Ngaiganam, E.P.; Radji, N.; Mezaghcha, W.; Lupande-Mwenebitu, D.; Baron, S.A.; Rolain, J.; Diene, S.M. Development of real-time PCR assay allowed describing the first clinical Klebsiella pneumonia isolate harboring plasmid-mediated colistin resistance mcr-8 gene in Algeria. J. Glob. Antimicrob. Resist. 2020, 20, 266–271. [Google Scholar] [CrossRef]
- Boix-Lemonche, G.; Lekka, M.; Skerlavaj, B. A Rapid Fluorescence-Based Microplate Assay to Investigate the Interaction of Membrane Active Antimicrobial Peptides with Whole Gram-Positive Bacteria. Antibiotics 2020, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Iriya, R.; Syal, K.; Jing, W.; Mo, M.; Yu, H.; Haydel, S.E.; Wang, S.; Tao, N. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation. J. Biomed. Opt. 2017, 22, 126002. [Google Scholar]
- Camerlingo, C.; Meo, G.D.; Lepore, M.; Lisitskiy, M.; Poli, A.; Portaccio, M.; Romano, I.; Donato, P.D. Graphene-Based and Surface-Enhanced Raman Spectroscopy for Monitoring the Physio-Chemical Response of Thermophilic Bacterial Spores to Low Temperatures Exposure. Sensors 2020, 20, 4150. [Google Scholar] [CrossRef] [PubMed]
- Clausen, C.H.; Dimaki, M.; Bertelsen, C.V.; Skands, G.E.; Rodriguez-Trujillo, R.; Thomsen, J.D.; Svendsen, W.E. Bacteria Detection and Differentiation Using Impedance Flow Cytometry. Sensors 2018, 18, 3496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spina, R.L.; António, D.C.; Desmet, C.; Valsesia, A.; Bombera, R.; Norlén, H.; Lettieri, T.; Colpo, P. Dark Field Microscopy-Based Biosensors for the Detection of E. coli in Environmental Water Samples. Sensors 2019, 19, 4652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cady, P.; Dufour, S.W.; Shaw, J.; Kraeger, S.J. Electrical Impedance Measurements: Rapid Method for Detecting and Monitoring Microorganisms. J. Clin. Microbiol. 1978, 7, 265–272. [Google Scholar]
- Ur, A.; Brown, D.F.J. Impedance Monitoring of Bacterial Activity. J. Med. Microbiol. 1973, 8, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Nahid, M.A.; Campbell, C.E.; Fong, K.S.K.; Barnhill, J.C. An evaluation of the impact of clinical bacterial isolates on epithelial cell monolayer integrity by the electric Cell-Substrate Impedance Sensing (ECIS) method. J. Microbiol. Methods 2020, 169, 105833. [Google Scholar] [CrossRef]
- Bancalari, E.; D’Incecco, P.; Sardaro, M.L.S.; Neviani, E.; Pellegrino, L.; Gatti, M. Impedance microbiology to speed up the screening of lactic acid bacteria exopolysaccharide production. Int. J. Food Microbiol. 2019, 306, 108268. [Google Scholar] [CrossRef]
- Liu, J.; Jasim, I.; Abdullah, A.; Shen, Z.; Zhao, L.; Dweik, M.; Zhang, S.; Almasri, M. An integrated impedance biosensor platform for detection of pathogens in poultry products. Sci. Rep. 2018, 8, 16109. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Lim, J.; Kim, J.; Kim, M.; Lee, J. Label-free electrochemical impedance spectroscopy using a micro interdigitated electrode inside a PCR chip for real-time monitoring. Microsyst. Technol. 2019, 25, 3503–3510. [Google Scholar] [CrossRef]
- An, Y.; Jun, T.; Zhang, F.; He, P. Electric cell-substrate impedance sensing (ECIS) for profiling cytotoxicity of cigarette smoke. J. Electroanal. Chem. 2019, 834, 180–186. [Google Scholar] [CrossRef]
- Singh, S.; Moudgil, A.; Mishra, N.; Das, S.; Mishra, P. Vancomycin functionalized WO3 thin film-based impedance sensor for efficient capture and highly selective detection of Gram-positive bacteria. Biosen. Bioelectron. 2019, 136, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Koklu, A.; Giuliani, J.; Monton, C.; Beskok, A. Rapid and Sensitive Detection of Nanomolecules by an AC Electrothermal Flow Facilitated Impedance Immunosensor. Anal. Chem. 2020, 92, 7762–7769. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xue, L.; Guo, R.; Zheng, L.; Wnag, S.; Yao, L.; Huo, X.; Liu, N.; Liao, M.; Li, Y.; et al. Combining impedance biosensor with immunomagnetic separation for rapid screening of Salmonella in poultry supply chains. Poult. Sci. 2020, 99, 1606–1614. [Google Scholar] [CrossRef]
- Cheng, Y.; Moura, P.A.R.; Zhenglong, L.; Feng, L.; Arokiam, S.; Yang, J.; Hariharan, M.; Basuray, S. Effect of electrode configuration on the sensitivity of nucleic acid detection in a non-planar, flow-through, porous interdigitated electrode. Biomicrofluidics 2019, 13, 064118. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Y. Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic sepration. Microbiol. Methods 2006, 64, 9–16. [Google Scholar] [CrossRef]
- Jo, N.; Kim, B.; Lee, S.M.; Oh, J.; Park, I.H.; Lim, K.J.; Shin, J.S.; Yoo, K.H. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility. Biosen. Bioelectron. 2018, 102, 164–170. [Google Scholar] [CrossRef]
- Settu, K.; Chen, C.; Liu, J.; Chen, C.L. Impedimetric method for measuring ultra-low E. coli concentrations in human urine. Biosen. Bioelectron. 2015, 66, 244–250. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Lee, C.K.; Lin, C.T. Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes. Biosen. Bioelectron. 2018, 103, 130–137. [Google Scholar] [CrossRef]
- Park, J.; Cho, S. Development of Interdigitated and Chain-Shaped Electrode Array for Electric Cell-Substrate Impedance Sensing. J. Nanosci. Nanotechnol. 2016, 16, 11911–11915. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Kim, M.H.; Jang, Y.S.; Cho, S. New Parylene Coating System with Real-Time and Non-Destructive Electrical Impedance Monitoring of Parylene Layer. J. Nanosci. Nanotechnol. 2019, 19, 1–5. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, J.; Kim, Y.H.; Choi, S.H.; Lee, S.-M.; Cho, W.W.; Lee, G.-Y.; Pyun, J.-C.; Cho, S. Electrochemical Detection of C-Reactive Protein in Human Serum Based on Self-Assembled Monolayer-Modified Interdigitated Wave-Shaped Electrode. Sensors 2019, 19, 5560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wayne, P.A.; Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Inform. Suppl. 2011, 31, 100–121. [Google Scholar]
- Rosati, G.; Cunego, A.; Fracchetti, F.; Casale, A.D.; Scaramuzza, M.; Toni, A.D.; Torriani, S.; Paccagnella, A. Inkjet Printed Interdigitated Biosensor for Easy and Rapid Detection of Bacteriophage Contamination: A Preliminary Study for Milk Processing Control Applications. Chemosensors 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, C.; Mei, W.; Guo, M.; Yang, Y. Equivalent circuit models for a biomembrane impedance sensor and analysis of electrochemical impedance spectra based on support vector regression. Med. Biol. Eng. Comput. 2019, 57, 1515–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagati, A.K.; Park, J.; Cho, S. Reduced Graphene Oxide Modified the Interdigitated Chain Electrode for an Insulin Sensor. Sensors 2016, 16, 109. [Google Scholar] [CrossRef]
- Paredes, J.; Becerro, S.; Arizti, F.; Aguinaga, A.; Pozo, J.L.D.; Arana, S. Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates. Sens. Actuators B Chem. 2013, 178, 663–670. [Google Scholar] [CrossRef]
- Ward, A.C.; Hannah, A.J.; Kendrick, S.L.; Tucker, N.P.; MacGregor, G.; Connolly, P. Identification and characterization of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy. Biosen. Bioelecron. 2018, 110, 65–70. [Google Scholar] [CrossRef]
Conc. NaCl | Rs | CPE | |
---|---|---|---|
% | Ω | p | |
0 | 4968.6 ± 107.7 | 0.747 ± 0.026 | 0.8639 ± 0.0012 |
0.0001 | 4128.3 ± 5.5 | 0.662 ± 0.001 | 0.8714 ± 0.0016 |
0.001 | 2101.3 ± 8.6 | 0.584 ± 0.003 | 0.9044 ± 0.0012 |
0.01 | 1465.1 ± 9.2 | 0.632 ± 0.008 | 0.9158 ± 0.0009 |
0.1 | 1401.0 ± 1.6 | 0.845 ± 0.006 | 0.9001 ± 0.0001 |
1 | 1363.2 ± 35.3 | 1.017 ± 0.005 | 0.8971 ± 0.0021 |
Time (h) | Rs (Ω) | CPE | ||
---|---|---|---|---|
p | ||||
S. aureus | 0 | 1327 ± 5.4 | 1.267 ± 0.021 | 0.861 ± 0.0005 |
2 | 1330 ± 3.5 | 1.317 ± 0.022 | 0.860 ± 0.0012 | |
4 | 1338 ± 3.8 | 1.309 ± 0.045 | 0.865 ± 0.0024 | |
6 | 1340 ± 4.2 | 1.366 ± 0.032 | 0.863 ± 0.0018 | |
8 | 1335 ± 8.5 | 1.454 ± 0.018 | 0.858 ± 0.0032 | |
10 | 1336 ± 2.4 | 1.442 ± 0.022 | 0.860 ± 0.0011 | |
12 | 1340 ± 3.5 | 1.453 ± 0.015 | 0.859 ± 0.0008 | |
14 | 1330 ± 2.6 | 1.466 ± 0.011 | 0.858 ± 0.0004 | |
16 | 1346 ± 1.4 | 1.448 ± 0.019 | 0.859 ± 0.0015 | |
18 | 1335 ± 2.3 | 1.443 ± 0.022 | 0.859 ± 0.0021 | |
20 | 1348 ± 1.6 | 1.431 ± 0.032 | 0.861 ± 0.0032 | |
22 | 1341 ± 1.9 | 1.438 ± 0.021 | 0.861 ± 0.0024 | |
24 | 1341 ± 2.2 | 1.432 ± 0.018 | 0.861 ± 0.0018 | |
MRSA | 0 | 1343 ± 7.7 | 0.997 ± 0.026 | 0.907 ± 0.0012 |
2 | 1323 ± 5.5 | 1.089 ± 0.014 | 0.891 ± 0.0021 | |
4 | 1341 ± 8.6 | 1.170 ± 0.035 | 0.885 ± 0.0015 | |
6 | 1330 ± 9.2 | 1.208 ± 0.022 | 0.885 ± 0.0005 | |
8 | 1335 ± 1.6 | 1.276 ± 0.015 | 0.877 ± 0.0007 | |
10 | 1326 ± 5.3 | 1.359 ± 0.064 | 0.870 ± 0.0011 | |
12 | 1312 ± 3.5 | 1.376 ± 0.032 | 0.870 ± 0.0010 | |
14 | 1318 ± 1.2 | 1.353 ± 0.015 | 0.873 ± 0.0021 | |
16 | 1313 ± 0.8 | 1.374 ± 0.054 | 0.871 ± 0.0014 | |
18 | 1314 ± 1.1 | 1.377 ± 0.023 | 0.870 ± 0.0011 | |
20 | 1310 ± 1.3 | 1.345 ± 0.011 | 0.874 ± 0.0015 | |
22 | 1311 ± 1.5 | 1.367 ± 0.025 | 0.872 ± 0.0019 | |
24 | 1314 ± 0.7 | 1.376 ± 0.032 | 0.871 ± 0.0013 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Lee, Y.; Hwang, Y.; Cho, S. Interdigitated and Wave-Shaped Electrode-Based Capacitance Sensor for Monitoring Antibiotic Effects. Sensors 2020, 20, 5237. https://doi.org/10.3390/s20185237
Park J, Lee Y, Hwang Y, Cho S. Interdigitated and Wave-Shaped Electrode-Based Capacitance Sensor for Monitoring Antibiotic Effects. Sensors. 2020; 20(18):5237. https://doi.org/10.3390/s20185237
Chicago/Turabian StylePark, Jinsoo, Yonghyun Lee, Youjin Hwang, and Sungbo Cho. 2020. "Interdigitated and Wave-Shaped Electrode-Based Capacitance Sensor for Monitoring Antibiotic Effects" Sensors 20, no. 18: 5237. https://doi.org/10.3390/s20185237
APA StylePark, J., Lee, Y., Hwang, Y., & Cho, S. (2020). Interdigitated and Wave-Shaped Electrode-Based Capacitance Sensor for Monitoring Antibiotic Effects. Sensors, 20(18), 5237. https://doi.org/10.3390/s20185237