Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Principle of Impact Flowmeter with Fluid–Structure Interactions
2.2. Process of LSTM for Mass Flow Rate Measurements
2.3. Experimental Setup for Gauge Plate Vibration and Mass Flow Rate Data Collection
2.4. Calculation of the Vibration Level and Roughness of the Gauge Plate
2.5. LSTM Mass Flow Rate Prediction Model
2.6. Verification of the Accuracy of LSTM Prediction Model
3. Results
3.1. Analysis of Vibration Characteristics of the Gauge Plate
3.2. Comparison of Vibration Responses and Mass Flow Rate
3.3. Performance Validation of the Proposed Flow Meter Based on Neural Network
4. Conclusions
5. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Harris, B.; Davies, C.; Davidson, J. The slot flow meter: A new device for continuous solids flow measurement. Chem. Eng. Sci. 1997, 52, 4637–4648. [Google Scholar] [CrossRef]
- Tomiyasu, H.; Tanaka, H. Impact Flow Meter. U.S. Patent 4,440,029, 3 April 1984. [Google Scholar]
- Kajiura, H.; Watanabe, K. Impact Flow Meter for Powdery and Granular Materials. U.S. Patent 3,611,803, 12 October 1971. [Google Scholar]
- Kempf, D.; McCarthy, W.P. Impact Flowmeter. U.S. Patent 5,335,554, 9 August 1994. [Google Scholar]
- Nordling, J. The aging bladder—A significant but underestimated role in the development of lower urinary tract symptoms. Exp. Gerontol. 2002, 37, 991–999. [Google Scholar] [CrossRef]
- Nilsson, G.E.; Tenland, T.; Oberg, P.A. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans. Biomed. Eng. 1980, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Zhang, Y.-N.; Wang, X.; Zhou, F.-D.; Li, T.; Guo, H.; Chen, S.-S.; Yuan, J.-L. Non-contact flow rate detection of component in mixed gas using spectrum absorption theory. Opt. Fiber Technol. 2018, 45, 167–172. [Google Scholar] [CrossRef]
- Zhou, H.; Ji, T.; Wang, R.; Ge, X.; Tang, X.; Tang, S. Multipath ultrasonic gas flow-meter based on multiple reference waves. Ultrasonics 2018, 82, 145–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Zhang, T.; Zheng, D. New analysis scheme of flow-acoustic coupling for gas ultrasonic flowmeter with vortex near the transducer. Sensors 2018, 18, 1151. [Google Scholar]
- Yang, Q.-Y.; Jin, N.-D.; Zhai, L.-S.; Ren, Y.-Y.; Yu, C.; Wei, J.-D. Measurement of Water Velocity in Gas–Water Two-Phase Flow with the Combination of Electromagnetic Flowmeter and Conductance Sensor. Sensors 2020, 20, 3122. [Google Scholar] [CrossRef] [PubMed]
- Meribout, M.; Azzi, A.; Ghendour, N.; Kharoua, N.; Khezzar, L.; AlHosani, E. Multiphase Flow Meters Targeting Oil & Gas Industries. Measurement 2020, 165, 108111. [Google Scholar]
- Wang, Y.; Li, H.; Liu, X.; Zhang, Y.; Xie, R.; Huang, C.; Hu, J.; Deng, G. Novel downhole electromagnetic flowmeter for oil-water two-phase flow in high-water-cut oil-producing wells. Sensors 2016, 16, 1703. [Google Scholar] [CrossRef] [PubMed]
- Yazdanshenasshad, B.; Safizadeh, M. Neural-network-based error reduction in calibrating utility ultrasonic flow meters. Flow Meas. Instrum. 2018, 64, 54–63. [Google Scholar] [CrossRef]
- Kidd, A.J.; Zhang, J.; Cheng, R. A low-error calibration function for an electrostatic gas-solid flow meter obtained via machine learning techniques with experimental data. Energy Built Environ. 2020, 1, 224–232. [Google Scholar] [CrossRef]
- Barbariol, T.; Feltresi, E.; Susto, G.A. Machine Learning approaches for Anomaly Detection in Multiphase Flow Meters. IFAC PapersOnLine 2019, 52, 212–217. [Google Scholar] [CrossRef]
- Farzaneh-Gord, M.; Mohseni-Gharyehsafa, B.; Ebrahimi-Moghadam, A.; Jabari-Moghadam, A.; Toikka, A.; Zvereva, I. Precise calculation of natural gas sound speed using neural networks: An application in flow meter calibration. Flow Meas. Instrum. 2018, 64, 90–103. [Google Scholar] [CrossRef]
- Pathan, R.K.; Biswas, M.; Khandaker, M.U. Time Series Prediction of COVID-19 by Mutation Rate Analysis using Recurrent Neural Network-based LSTM Model. Chaos Solitons Fractals 2020, 138, 110018. [Google Scholar] [CrossRef] [PubMed]
- Moghar, A.; Hamiche, M. Stock Market Prediction Using LSTM Recurrent Neural Network. Procedia Comput. Sci. 2020, 170, 1168–1173. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H. Prediction for tourism flow based on LSTM neural network. Procedia Comput. Sci. 2018, 129, 277–283. [Google Scholar] [CrossRef]
- Blevins, R.D. Flow-Induced Vibration; Van Nostrand Reinhold Co.: New York, NY, USA, 1977. [Google Scholar]
- Ahn, S.; Koh, H.; Lee, J.; Park, J. Dependence between the vibration characteristics of the proton exchange membrane fuel cell and the stack structural feature. Environ. Res. 2019, 173, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Sherstinsky, A. Fundamentals of recurrent neural network (rnn) and long short-term memory (lstm) network. Phys. D 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Bich, W.; Cox, M.G.; Harris, P.M. Evolution of the ‘Guide to the Expression of Uncertainty in Measurement’. Metrologia 2006, 43, S161. [Google Scholar] [CrossRef]
- Savage, S.B.; Hutter, K. The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mech. 1991, 86, 201–223. [Google Scholar] [CrossRef]
- Inman, D.J.; Singh, R.C. Engineering Vibration; Prentice Hall: Englewood Cliffs, NJ, USA, 1994; Volume 3. [Google Scholar]
Mode | 1st | 2nd | 3rd | 4th | 5th | 6th | 7th | 8th |
---|---|---|---|---|---|---|---|---|
βnl | 3.9 | 7.1 | 10.2 | 13.3 | 16.5 | (4n+1)π/4, n > 5 | ||
Experiment (Hz) | 177 | 420 | 655 | 1004 | 1408 | 1815 | 2044 | 2875 |
Predict (Hz) | 178 | 372 | 636 | 971 | 1375 | 1851 | 2397 | 3013 |
Water | uA | γ | δ (%) | Sand | uA | γ | δ (%) | ||
---|---|---|---|---|---|---|---|---|---|
Measure | Predict | Measure | Predict | ||||||
1 | 0.0280 | 0.0220 | 0.9837 | 1.2565 | 1 | 0.2205 | 0.2310 | 0.1773 | 2.6460 |
2 | 0.0320 | 0.0280 | 0.4129 | 3.3772 | 2 | 0.0985 | 0.1083 | 0.1503 | 3.1626 |
3 | 0.0306 | 0.0214 | 0.7699 | 3.8343 | 3 | 0.1576 | 0.1660 | 0.1960 | 4.8402 |
4 | 0.0205 | 0.0205 | 0.7032 | 4.5905 | 4 | 0.1414 | 0.1528 | 0.1556 | 5.3024 |
5 | 0.0279 | 0.0237 | 1.1567 | 11.0908 | 5 | 0.2353 | 0.2521 | 0.1597 | 6.9358 |
6 | 0.0285 | 0.0272 | 0.922 | 0.2108 | 6 | 0.1744 | 0.1406 | 0.1396 | 5.5649 |
7 | 0.0348 | 0.0326 | 0.4696 | 3.6737 | 7 | 0.0400 | 0.0578 | 0.1738 | 7.6984 |
8 | 0.0282 | 0.0248 | 0.4878 | 10.0374 | 8 | 0.0608 | 0.0670 | 0.103 | 3.7704 |
9 | 0.0292 | 0.0179 | 0.3586 | 1.5855 | 9 | 0.0426 | 0.0313 | 0.1292 | 5.9304 |
10 | 0.0181 | 0.0096 | 0.2793 | 7.6147 | 10 | 0.0608 | 0.0342 | 0.1007 | 0.9887 |
11 | 0.0227 | 0.0221 | 0.3562 | 8.7841 | 11 | 0.0398 | 0.0292 | 0.1607 | 7.0165 |
12 | 0.0256 | 0.0199 | 0.3476 | 8.6268 | 12 | 0.0508 | 0.0453 | 0.1905 | 8.4739 |
Average | 0.0272 | 0.0225 | 0.6040 | 5.3902 | Average | 0.1102 | 0.1096 | 0.1533 | 5.3739 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Chung, Y.; Park, J. Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM. Sensors 2020, 20, 5922. https://doi.org/10.3390/s20205922
Jin J, Chung Y, Park J. Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM. Sensors. 2020; 20(20):5922. https://doi.org/10.3390/s20205922
Chicago/Turabian StyleJin, Jie, Youngbeen Chung, and Junhong Park. 2020. "Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM" Sensors 20, no. 20: 5922. https://doi.org/10.3390/s20205922
APA StyleJin, J., Chung, Y., & Park, J. (2020). Development of a Flowmeter Using Vibration Interaction between Gauge Plate and External Flow Analyzed by LSTM. Sensors, 20(20), 5922. https://doi.org/10.3390/s20205922