Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Campaign
2.2. Remote Sensing Data Acquired by the Unmanned Aerial System (UAS)
2.3. Estimation of LAI
2.3.1. VI-Based Method
2.3.2. Data Assimilation Method
2.3.3. The Hybrid Method
- Step 1.
- For early-stage LAI estimation, the VI-based empirical method was applied. VIs were calculated from time-series RS data acquired by UAS and the empirical model was built between field LAI measurements and VIs. Then, LAI was estimated using the empirical model.
- Step 2.
- For mid-stage LAI estimation, the RS-based LAI was assimilated into the WOFOST model to correct the daily crop growth simulations from the beginning of the growth season to the end of the mid stage to generate LAI estimations.
- Step 3.
- For late-stage LAI simulation, crop growth was simulated using the method in Step 2 from the beginning of the growing season to the end of the mid stage. Then, we halted RS assimilation and used the WOFOST model instead to output the daily LAI.
2.4. Evaluating the Accuracies of LAI Estimations
3. Results and Discussion
3.1. LAI Estimation Using the VI-Based Method
3.2. LAI Simulation Using the Assimilation Method
3.2.1. WOFOST Model Calibration
3.2.2. LAI Simulation Using the WOFOST Model
3.2.3. LAI Simulation Using the EnKF Assimilation Method
3.3. LAI Estimations Using the Hybrid Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Cihlar, J. Retrieving leaf area index of boreal conifer forests using Landsat TM images. Remote Sens. Environ. 1996, 55, 153–162. [Google Scholar] [CrossRef]
- Myneni, R.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Sellers, P.; Dickinson, R.; Randall, D.; Betts, A.; Hall, F.; Berry, J.; Collatz, G.; Denning, A.; Mooney, H.; Nobre, C. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, T.; Liu, J.; Qian, B.; He, L.; Liu, J.; Wang, R.; Jing, Q.; Champagne, C.; McNairn, H.; Powers, J.; et al. Estimating crop biomass using leaf area index derived from Landsat 8 and Sentinel-2 data. ISPRS J. Photogramm. Remote Sens. 2020, 168, 236–250. [Google Scholar] [CrossRef]
- Pagani, V.; Guarneri, T.; Busetto, L.; Ranghetti, L.; Boschetti, M.; Movedi, E. A high-resolution, integrated system for rice yield forecasting at district level. Agric. Syst. 2018, 168, 181–190. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Munoz-Mari, J.; Pablo Rivera, J.; Veroustraete, F.; Clevers, J.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Pearson, R.; Miller, L. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie. In Proceedings of the Eighth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 2–6 October 1972; pp. 7–12. [Google Scholar]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band Enhanced Vegetation Index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Myneni, R.; Hall, F. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Liu, J.; Pattey, E.; Jégo, G. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [Google Scholar] [CrossRef]
- Steven, M. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sens. Environ. 2004, 63, 49–60. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Li-Cor. LAI-2000 Plant Canopy Analyser: Instruction Manual; LI–COR, Inc.: Lincoln, NE, USA, 1992. [Google Scholar]
- Yu, L.; Shang, J.; Cheng, Z.; Gao, Z.; Wang, Z.; Tian, L.; Wang, D.; Che, T.; Jin, R.; Liu, J.; et al. Assessment of Cornfield LAI Retrieved from Multi-Source Satellite Data Using Continuous Field LAI Measurements Based on a Wireless Sensor Network. Remote Sens. 2020, 12, 3304. [Google Scholar] [CrossRef]
- Breda, N. Ground-based measurements of leaf area index: A review of methods, instruments and current controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef] [PubMed]
- Manuel, C.; García-Haro, F.; Lorenzo, B.; Luigi, R.; Gilabert, M.; Amparo, M.; Gustau, C.; Fernando, C.; Mirco, B. A Critical Comparison of Remote Sensing Leaf Area Index Estimates over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System. Remote Sens. 2018, 10, 763. [Google Scholar]
- Bacour, C.; Baret, F.; Beal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAIx (ab), from top of canopy MERIS reflectance data:Principles and validation. Remote Sens. Environ. 2006, 105, 313–325. [Google Scholar] [CrossRef]
- Pan, J.; Yang, H.; He, W.; Xu, P. Retrieve leaf area index from HJ-CCD image based on support vector regression and physical model. In Proceedings of the SPIE—The International Society for Optical Engineering, Dresden, Germany, 23–26 September 2013. [Google Scholar]
- Svendsen, D.; Martino, L.; Campos-Taberner, M.; García-Haro, F.; Camps-Valls, G. Joint Gaussian Processes for Biophysical Parameter Retrieval. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1718–1727. [Google Scholar] [CrossRef] [Green Version]
- Gurung, R.; Breidt, F.; Dutin, A.; Ogle, S. Predicting enhanced vegetation index (EVI) curves for ecosystem modeling applications. Remote Sens. Environ. 2009, 113, 2186–2193. [Google Scholar] [CrossRef]
- Li, X.; Strahler, A. Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy-effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 1992, 30, 276–292. [Google Scholar] [CrossRef]
- Verhoef, W. Light-scattering by leaf layers with application to canopy reflectance modeling the SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Strahler, A.; Woodcock, C. A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies. IEEE Trans. Geosci. Remote Sens. 1995, 33, 466–480. [Google Scholar] [CrossRef]
- Duan, S.; Li, Z.; Wu, H.; Tang, B.; Ma, L.; Zhao, E.; Li, C. Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 12–20. [Google Scholar] [CrossRef]
- Li, H.; Chen, Z.; Jiang, Z.; Wu, W.; Ren, J.; Liu, B.; Hasi, T. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat. J. Integr. Agric. 2017, 16, 266–285. [Google Scholar] [CrossRef]
- Wei, X.; Gu, X.; Meng, Q.; Yu, T.; Zhou, X.; Wei, Z.; Ji, K.; Wang, C. Leaf Area Index Estimation Using Chinese GF-1 Wide Field View Data in an Agriculture Region. Sensors 2017, 17, 1593. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Rivera, J.; Antonio, R.; Moreno, J. Brown and green LAI mapping through spectral indices. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 350–358. [Google Scholar] [CrossRef]
- Fang, H.; Ye, Y.; Liu, W.; Wei, S.; Ma, L. Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: An investigation of the PASTIS-57 instrument and smartphone applications. Agric. For. Meteorol. 2018, 253–254, 48–61. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Modi, A.; Beletse, Y. Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace. Agric. For. Meteorol. 2014, 192–193, 132–139. [Google Scholar] [CrossRef]
- Abrahamsen, P.; Hansen, S. Daisy: An open soil-crop-atmosphere system model. Environ. Model. Softw. 2000, 15, 313–330. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Huang, J.; Ma, H.; Su, W.; Zhang, X.; Huang, Y.; Fan, J.; Wu, W. Jointly assimilating MODIS LAI and ET products into the SWAP model for winter wheat yield estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4060–4071. [Google Scholar] [CrossRef]
- Wen, Z.; Huaing, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating Soil Moisture Retrieved from Sentinel-1 and Sentinel-2 Data into WOFOST Model to Improve Winter Wheat Yield Estimation. Remote Sens. 2019, 11, 1618. [Google Scholar]
- Zhao, Y.; Chen, S.; Shen, S. Assimilating remote sensing information with crop model using Ensemble Kalman Filter for improving LAI monitoring and yield estimation. Ecol. Model. 2013, 270, 30–42. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.; Liang, S.; Chen, Z.; Xue, J.; Wu, Y.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276–277, 107609. [Google Scholar] [CrossRef]
- Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Chen, Y.; Cournède, P. Data assimilation to reduce uncertainty of crop model prediction with Convolution Particle Filtering. Ecol. Model. 2014, 290, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric. For. Meteorol. 2015, 204, 106–121. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur. J. Agron. 2019, 102, 1–13. [Google Scholar] [CrossRef]
- Behera, S.; Srivastava, P.; Pathre, U.; Tuli, R. An indirect method of estimating leaf area index in Jatropha curcas L. using LAI-2000 Plant Canopy Analyzer. Agric. For. Meteorol. 2010, 150, 307–311. [Google Scholar] [CrossRef]
- Cheng, Z.; Meng, J.; Qiao, Y.; Wang, Y.; Dong, W.; Han, Y. Preliminary study of soil available nutrient simulation using a modified WOFOST model and time-series remote sensing observation. Remote Sens. 2018, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Meng, J.; Wang, Y. Improving spring maize yield estimation at field scale by assimilating time-series HJ-1 CCD data into the WOFOST model using a new method with fast algorithms. Remote Sens. 2016, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Van Ittersum, M.; Leffelaar, P.; van Keulen, H.; Kropff, M.; Bastiaans, L.; Goudriaan, J. On approaches and applications of the Wageningen crop models. Eur. J. Agron. 2003, 18, 201–234. [Google Scholar] [CrossRef]
- Van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989, 5, 16–24. [Google Scholar] [CrossRef]
- Stol, W.; Rouse, D.; van Kraalingen, D.; Klepper, O. FSEOPT A FORTRAN Program for Calibration and Uncertainty Analysis of Simulation Models; A joint publication of Centre for Agrobiological Research (CABO-DLO) and Department of Theoretical Production Ecology, Agricultural University: Wageningen, The Netherlands, 1992; p. 24. [Google Scholar]
- Li, Y.; Zhou, Q.; Zhou, J.; Zhang, G.; Chen, C.; Wang, J. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecol. Model. 2014, 291, 15–27. [Google Scholar] [CrossRef]
- Ma, H.; Huang, J.; Zhu, D.; Liu, J.; Su, W.; Zhang, C.; Fan, J. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST–ACRM model with Ensemble Kalman Filter. Math. Comput. Model. 2013, 58, 753–764. [Google Scholar] [CrossRef]
- Colombo, R.; Bellingeri, D.; Fasolini, D.; Marino, C. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sens. Environ. 2003, 86, 120–131. [Google Scholar] [CrossRef]
- Meroni, M.; Colombo, R.; Panigada, C. Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens. Environ. 2004, 92, 195–206. [Google Scholar] [CrossRef]
- Canisius, F.; Fernandes, R.; Chen, J. Comparison and evaluation of Medium Resolution Imaging Spectrometer leaf area index products across a range of land use. Remote Sens. Environ. 2010, 114, 950–960. [Google Scholar] [CrossRef]
Date (Month-Day) | Number of Samples | NDVI | RVI | OSAVI | EVI2 | MTVI2 |
---|---|---|---|---|---|---|
6-30 | 36 | 0.78 ** | 0.79 ** | 0.75 ** | 0.67 ** | 0.73 ** |
7-29 | 28 | 0.63 ** | 0.64 ** | 0.55 ** | 0.46 * | 0.39 * |
8-25 | 29 | 0.30 | 0.30 | 0.42 * | 0.44 * | 0.33 |
Time (Month-Day) | Field LAI | NDVI | RVI | OSVI | EVI2 | MTVI2 |
---|---|---|---|---|---|---|
6-30 | 31.51 | 10.92 | 30.54 | 13.44 | 20.37 | 20.82 |
7-29 | 17.96 | 1.49 | 9.35 | 2.83 | 6.82 | 4.12 |
8-25 | 12.71 | 1.51 | 4.64 | 2.50 | 5.38 | 4.43 |
Parameters | Description | Original Values | Calibrated Values | Unit | Calibration Method |
---|---|---|---|---|---|
TSUM1 | Temperature sum from emergence to anthesis | 695 | 890 | °C × d | Field campaign |
TSUM2 | Temperature sum from anthesis to maturity | 800 | 710 | °C × d | Field campaign |
CVL | Conversion efficiency of assimilates into leaf | 0.68 | 0.64 | kg/kg | Field campaign |
CVO | Conversion efficiency of assimilates into storage organ | 0.67 | 0.81 | kg/kg | Field campaign |
CVR | Conversion efficiency of assimilates into root | 0.69 | 0.70 | kg/kg | Field campaign |
CVS | Conversion efficiency of assimilates into stem | 0.66 | 0.66 | kg/kg | Field campaign |
FRTB | Fraction of total dry matter to root | 0–0.37 | 0–0.40 | kg/kg | Field campaign |
FOTB | Fraction of above ground dry matter to storage organs (DVS = 0.1–1.7) | 0–1.00 | 0–0.74 | kg/kg | Field campaign |
FLTB | Fraction of above ground dry matter to leaves (DVS = 0.1–1.7) | 0–0.62 | 0.20–0.75 | kg/kg | Field campaign |
FSTB | Fraction of above ground dry matter to stem (DVS = 0.1–1.7) | 0–0.85 | 0.06–0.57 | kg/kg | Field campaign |
NBASE | Basic soil nitrogen content | 100 | 40–410 | mg/kg | SAN estimation method |
PBASE | Basic phosphorus content | 100 | 10–80 | mg/kg | SAN estimation method |
KBASE | Basic potassium content | 100 | 20–340 | mg/kg | Field campaign |
SMFCF | Soil moisture content at field capacity | 0.11 | 0.46 | cm3/cm3 | FSEOPT software |
SMW | Soil moisture content at wilting point | 0.04 | 0.20 | cm3/cm3 | FSEOPT software |
SM0 | Soil moisture content of saturated soil | 0.39 | 0.570 | cm3/cm3 | FSEOPT software |
RDMCR | Maximum root depth allowed by soil | 10 | 2.4 | m | FSEOPT software |
SPAN | Life span of leaves growing at 35 °C | 33 | 28 | day | FSEOPT software |
Variable | Method | Values | Error |
---|---|---|---|
Emergence time | Observed | 1 June | - |
Original model | 23 May | −8 days | |
Calibrated model | 28 May | −4 days | |
Anthesis time | Observed results | 25 July | - |
Original model | 15 July | −10 days | |
Calibrated model | 29 July | 4 days | |
Maturity time | Observed results | 27 September | - |
Original model | 22 September | −5 days | |
Calibrated model | 30 September | 3 days | |
Yield (kg/ha) | Observed results | 9179 | - |
Original model | 9607 | −428 | |
Calibrated model | 9104 | 75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Z.; Meng, J.; Shang, J.; Liu, J.; Huang, J.; Qiao, Y.; Qian, B.; Jing, Q.; Dong, T.; Yu, L. Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model. Sensors 2020, 20, 6006. https://doi.org/10.3390/s20216006
Cheng Z, Meng J, Shang J, Liu J, Huang J, Qiao Y, Qian B, Jing Q, Dong T, Yu L. Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model. Sensors. 2020; 20(21):6006. https://doi.org/10.3390/s20216006
Chicago/Turabian StyleCheng, Zhiqiang, Jihua Meng, Jiali Shang, Jiangui Liu, Jianxi Huang, Yanyou Qiao, Budong Qian, Qi Jing, Taifeng Dong, and Lihong Yu. 2020. "Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model" Sensors 20, no. 21: 6006. https://doi.org/10.3390/s20216006