A Robust Reactive Static Obstacle Avoidance System for Surface Marine Vehicles
Abstract
:1. Introduction
1.1. Overview of Reactive Algorithms Applied to USVs
1.2. Related Works
2. Mathematical Models
2.1. USV Model
2.2. Sensor Environment Modeling
2.3. Obstacle Scenarios Used to Evaluate the New RRSOAS
2.4. Model of the Environment Surrounding the USV: Occupation Grid
3. Robust Reactive Static Obstacle Avoidance System
- Efective discrete decision space () System. With the objective of avoiding a possible collision, this block generates a set of alternative government setpoints.
- Path predictor system based on estimated closed-loop model. Taking into account the USV’s state vector (), is used to make predictions of possible paths () that the USV could follow to avoid a collision.
- Robust collision checking system through occupancy grid. The paths are translated into the occupancy grid and characterized by a repulsive force () and an estimated collision time ().
- Guidance and obstacle avoidance heuristic system. Finally, based on and , and the goal setpoints (), a heuristic is used to restrict, weight and decide over the setpoints that are demanded by the controllers; .
3.1. Effective Discrete Decision Space System
3.2. Path Predictor System Based On Estimated Closed-Loop Model
3.2.1. Estimated Closed-Loop Model
3.2.2. Path Predictor with Variable Prediction Horizon
3.3. Robust Collision Checking System through Occupancy Grid
3.3.1. Variable Shape as a Function of the Prediction Step
3.3.2. New Repulsive Forces and Estimated Collision Times Method
3.4. Guidance and Obstacle Avoidance Heuristic System
4. Simulation Results
4.1. Performances Analysis
4.2. Robustness Analysis
5. General Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Campbell, S.; Naeem, W.; Irwin, G.W. A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annu. Rev. Control 2012, 36, 267–283. [Google Scholar] [CrossRef] [Green Version]
- González, D.; Joshué, P.; Milanés, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1135–1145. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Trondheim, Norway, 2011; ISBN 9781119991496. [Google Scholar]
- Fossen, T.I. Marine Control Systems; John Wiley & Sons: Trondheim, Norway, 2002; ISBN 8292356002. [Google Scholar]
- Elfes, A. Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer 1989, 22, 46–57. [Google Scholar] [CrossRef]
- Lavalle, S. Planning Algorithms; Cambridge University Press: New York, NY, USA, 2006; ISBN 978-0-521-86205-9. [Google Scholar]
- Saval-Calvo, M.; Medina-Valdés, L.; Castillo-Secilla, J.M.; Cuenca-Asensi, S.; Martínez-Álvarez, A.; Villagrá, J. A review of the bayesian occupancy filter. Sensors 2017, 17, 344. [Google Scholar] [CrossRef] [PubMed]
- Perera, L.P.; Ferrari, V.; Santos, F.P.; Hinostroza, M.A.; Guedes Soares, C. Experimental Evaluations on Ship Autonomous Navigation and Collision Avoidance by Intelligent Guidance. IEEE J. Ocean. Eng. 2015, 40, 374–387. [Google Scholar] [CrossRef]
- Perera, L.P.; Oliveira, P.; Guedes Soares, C. Maritime Traffic Monitoring Based on Vessel Detection, Tracking, State Estimation, and Trajectory Prediction. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1188–1200. [Google Scholar] [CrossRef]
- Kim, T.; Choi, J.; Lee, Y.; Choi, H.-T. VFH+ based Obstacle Avoidance using Monocular Vision of Unmanned Surface Vehicle. J. Ocean Eng. Technol. 2016, 30, 426–430. [Google Scholar] [CrossRef]
- Minguez, J.; Lamiraux, F.; Laumond, J.-P. Motion Planning and Obstacle Avoidance. In Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2008; Volume E, pp. 827–852. ISBN 9783540303015. [Google Scholar]
- Kuwata, Y.; Wolf, M.T.; Zarzhitsky, D.; Huntsberger, T.L. Safe maritime autonomous navigation with COLREGS, using velocity obstacles. IEEE J. Ocean. Eng. 2014, 39, 110–119. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, W.; Shi, P. A real-time collision avoidance learning system for Unmanned Surface Vessels. Neurocomputing 2016, 182, 255–266. [Google Scholar] [CrossRef]
- Perera, L.P.; Carvalho, J.P.; Guedes Soares, C. Intelligent ocean navigation and fuzzy-Bayesian decision/action formulation. IEEE J. Ocean. Eng. 2012, 37, 204–219. [Google Scholar] [CrossRef]
- Johansen, T.A.; Perez, T.; Cristofaro, A. Ship collision avoidance and COLREGS compliance using simulation-based control behavior selection with predictive hazard assessment. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3407–3422. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Wang, G.; Fan, Y.; Mu, D.; Qiu, B. Collision avoidance using finite control set model predictive control for unmanned surface vehicle. Appl. Sci. 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Junior, A.G.; dos Santos, D.H.; de Negreiros, A.P.F.; de Souza Silva Silva, J.M.V.B.; Gonçalves, L.M.G. High-Level Path Planning for an Autonomous. Sensors 2020, 20, 1550. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez Cantos, A. Aplicación de la Teoría Cualitativa de Sistemas Dinámicos para el Guiado Autónomo de Vehículos; Universidad de Cádiz: Cádiz, Spain, 2017. [Google Scholar]
- Blanco, J.L.; González, J.; Fernández-Madrigal, J.A. Extending obstacle avoidance methods through multiple parameter-space transformations. Auton. Robot. 2008, 24, 29–48. [Google Scholar]
- Savkin, A.V.; Hoy, M. Reactive and the shortest path navigation of a wheeled mobile robot in cluttered environments. Robotica 2013, 31, 323–330. [Google Scholar] [CrossRef]
- Kundu, S.; Parhi, D.R. Reactive navigation of underwater mobile robot using ANFIS approach in a manifold manner. Int. J. Autom. Comput. 2017, 14, 307–320. [Google Scholar] [CrossRef]
- Blaich, M.; Rosenfelder, M.; Schuster, M.; Bittel, O.; Reuter, J. Extended grid based collision avoidance considering COLREGs for vessels. In Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft, Arenzano Italy, 19–21 September 2012; Volume 9, pp. 416–421. [Google Scholar]
- Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D. Path Planning of an Autonomous Surface Vehicle based on Artificial Potential Fields in a Real Time Marine Environment. In Proceedings of the 16 International Conference on Computer and IT Applications in the Maritime Industries, Cardiff, Gales, UK, 15–17 May 2017; pp. 48–54. [Google Scholar]
- Zhang, G.; Deng, Y.; Zhang, W. Robust neural path-following control for underactuated ships with the DVS obstacles avoidance guidance. Ocean Eng. 2017, 143, 198–208. [Google Scholar] [CrossRef]
- Fiorini, P.; Shiller, Z. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Rob. Res. 1998, 17, 760–772. [Google Scholar] [CrossRef]
- Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Khatib, O. Real-Time Obstacle Avoidance For Manipulators Additionally, Mobile Robots. In Proceedings of the IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; pp. 500–505. [Google Scholar]
- Borenstein, J.; Koren, Y. Real-Time Obstacle Avoidance for Fast Mobile Robots. IEEE Trans. Syst. Man Cybern. 1989, 19, 1179–1187. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, I.; Borenstein, J. VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots. In Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, 16–20 May 1998; pp. 1572–1577. [Google Scholar]
- Guardeño, R.; López, M.J.; Sánchez, J.; Consegliere, A. AutoTuning Environment for Static Obstacle Avoidance Methods Applied to USVs. J. Mar. Sci. Eng. 2020, 8, 300. [Google Scholar] [CrossRef]
- Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D. Towards use of Dijkstra Algorithm for Optimal Navigation of an Unmanned Surface Vehicle in a Real-Time Marine Environment with results from Artificial Potential Field. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 2018, 12, 125–131. [Google Scholar] [CrossRef]
- Agrawal, P.; Dolan, J.M. COLREGS-compliant target following for an Unmanned Surface Vehicle in dynamic environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1065–1070. [Google Scholar]
- Abdelaal, M.; Fränzle, M.; Hahn, A. Nonlinear Model Predictive Control for trajectory tracking and collision avoidance of underactuated vessels with disturbances. Ocean Eng. 2018, 160, 168–180. [Google Scholar] [CrossRef]
- Xue, Y.; Lee, B.S.; Han, D. Automatic collision avoidance of ships. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2009, 223, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, D.; Yan, X.; Haugen, S.; Guedes Soares, C. A distributed anti-collision decision support formulation in multi-ship encounter situations under COLREGs. Ocean Eng. 2015, 105, 336–348. [Google Scholar] [CrossRef]
- Naeem, W.; Irwin, G.W.; Yang, A. COLREGs-based collision avoidance strategies for unmanned surface vehicles. Mechatronics 2012, 22, 669–678. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Jafarbiglu, H.; Abdolmaleki, H.; Omrani, E.; Monhaseri, F.; Abdollahzadeh, M.; Mohammadi-Aghdam, A.; Kiapei, A.; Salmani-Zakaria, Y.; Makhsoos, A. Developing a navigation, guidance and obstacle avoidance algorithm for an Unmanned Surface Vehicle (USV) by algorithms fusion. Ocean Eng. 2018, 159, 56–65. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Cai, Y. The ship maneuverability based collision avoidance dynamic support system in close-quarters situation. Ocean Eng. 2017, 146, 486–497. [Google Scholar] [CrossRef]
- Loe, Ø.A.G. Collision Avoidance for Unmanned Surface Vehicles; Norwegian University of Science and Technology: Trondheim, Norway, 2008. [Google Scholar]
- Tang, P.; Zhang, R.; Liu, D.; Huang, L.; Liu, G.; Deng, T. Local reactive obstacle avoidance approach for high-speed unmanned surface vehicle. Ocean Eng. 2015, 106, 128–140. [Google Scholar] [CrossRef]
- Xie, S.; Wu, P.; Peng, Y.; Luo, J.; Qu, D.; Li, Q.; Gu, J. The obstacle avoidance planning of USV based on improved artificial potential field. In Proceedings of the 2014 IEEE International Conference on Information and Automation (ICIA), Hailar, China, 28–30 July 2014; pp. 746–751. [Google Scholar]
- Tang, P.; Zhang, R.; Liu, D.; Zou, Q.; Shi, C. Research on near-field obstacle avoidance for unmanned surface vehicle based on heading window. In Proceedings of the 2012 24th Chinese Control and Decision Conference, Taiyuan, China, 23–25 May 2012; pp. 1262–1267. [Google Scholar]
- Bertaska, I.R.; Shah, B.; Von Ellenrieder, K.; Švec, P.; Klinger, W.; Sinisterra, A.J.; Dhanak, M.; Gupta, S.K. Experimental evaluation of automatically-generated behaviors for USV operations. Ocean Eng. 2015, 106, 496–514. [Google Scholar] [CrossRef]
- Mei, J.H.; Arshad, M.R. COLREGs based navigation of riverine Autonomous Surface Vehicle. In Proceedings of the 2016 IEEE 6th International Conference on Underwater System Technology: Theory and Applications, Penang, Malaysia, 13–14 December 2016; pp. 145–149. [Google Scholar]
- Shah, B.C.; Bertaska, I.R.; Alvarez, J.; Sinisterra, A.J.; Von Ellenrieder, K.; Dhanak, M.; Gupta, S.K.; Member, S.; Svec, P.; Shah, B.C.; et al. Dynamics-Aware Target Following for an Autonomous Surface Vehicle Operating under COLREGs in Civilian Traffic. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3871–3878. [Google Scholar]
- Blaich, M.; Köhler, S.; Reuter, J.; Hahn, A. Probabilistic collision avoidance for vessels. IFAC-PapersOnLine 2015, 28, 69–74. [Google Scholar] [CrossRef]
- Pêtrès, C.; Romero-Ramirez, M.A.; Plumet, F. A potential field approach for reactive navigation of autonomous sailboats. Rob. Auton. Syst. 2012, 60, 1520–1527. [Google Scholar] [CrossRef]
- Krogh, B.H. A Generalized Potential Field Approach to Obstacle Avoidance Control. In Robotics Research: The Next Five Years and Beyond; RI/SME: Bethlehem, PA, USA, 1984. [Google Scholar]
- Tilove, R.B. Local obstacle avoidance for mobile robots based on the method of artificial potentials. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Cincinnati, OH, USA, 13–18 May 1990; pp. 566–571. [Google Scholar]
- Borenstein, J.; Koren, Y. The vector field histogram—Fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom 1991, 7, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Snape, J.; Van Den Berg, J.; Guy, S.J.; Manocha, D. The hybrid reciprocal velocity obstacle. IEEE Trans. Robot. 2011, 27, 696–706. [Google Scholar] [CrossRef] [Green Version]
- Guy, S.J.; Lin, M.; Manocha, D. Reciprocal n -body Collision Avoidance. In Robotics Research; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–16. ISBN 978-3-642-19456-6. [Google Scholar]
- Chakravarthy, A.; Ghose, D. Obstacle avoidance in a dynamic environment: A collision cone approach. IEEE Trans. Syst. Man Cybern. 1998, 28, 562–574. [Google Scholar] [CrossRef] [Green Version]
- Bibuli, M.; Singh, Y.; Sharma, S.; Sutton, R.; Hatton, D.; Khan, A. A Two Layered Optimal Approach towards Cooperative Motion Planning of Unmanned Surface Vehicles in a Constrained Maritime Environment. IFAC-PapersOnLine 2018, 29, 378–383. [Google Scholar] [CrossRef]
- Blaich, M.; Rosenfelder, M.; Schuster, M.; Bittel, O.; Reuter, J. Fast grid based collision avoidance for vessels using A* search algorithm. In Proceedings of the 17th International Conference on Methods & Models in Automation & Robotics, Miedzyzdrojie, Poland, 27–30 August 2012; pp. 385–390. [Google Scholar]
- Astrom, K.J.; Wittenmark, B. Adaptive Control; Addison Whesley: Boston, MA, USA, 1989; ISBN 0201097206. [Google Scholar]
- Kallstrom, C.G. Identification and Adaptive Control Applied to Ship Steering; Department of Automatic Control, Lund University: Lund, Sweden, 1979. [Google Scholar]
- Lewis, E.V. Principles of Naval Architecture, Vol III—Motions in Waves and Controllability; SNAME (The Society of Naval Architects and Marine Engineers): Jersey City, NJ, USA, 1989; ISBN 0939773023. [Google Scholar]
- López, M.J.; Consegliere, A.; Terrón, J. Modelado y Simulación de Sistemas. Aplicación al Buque; Universidad de Cádiz: Cádiz, España, 1997. [Google Scholar] [CrossRef]
- Richards, A.; How, J.P. Robust variable horizon model predictive control for vehicle maneuvering. Int. J. Robust Nonlinear Control 2006, 16, 333–351. [Google Scholar] [CrossRef]
- Guardeño, R.; López, M.J.; Sánchez, V.M. MIMO PID Controller Tuning Method for Quadrotor Based on LQR/LQG Theory. Robotics 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- MathWorks. Navigation Toolbox. Available online: https://es.mathworks.com/products/navigation.html (accessed on 4 April 2020).
- Do, K.D.; Jiang, Z.P.; Pan, J. Robust adaptive path following of underactuated ships. Automatica 2004, 40, 929–944. [Google Scholar] [CrossRef]
- Han, J.; Xiong, J.; He, Y.; Gu, F.; Li, D. Nonlinear Modeling for a Water-Jet Propulsion USV: An Experimental Study. IEEE Trans. Ind. Electron. 2017, 64, 3348–3358. [Google Scholar] [CrossRef]
- Rubio, F.R.; López, M.J. Control Adaptativo y Robusto, 1st ed.; Universidad de Sevilla: Sevilla, Spain, 1996; ISBN 84-472-0319-0. [Google Scholar]
- Velodyne Lidar. UltraPuck Data Sheet; Velodyne: Hellyer Ave, SJ, USA, 2019. [Google Scholar]
- Government of Spain. Reglamento Internacional para Prevenir los Abordajes, 1972. Boletín del Estado 1977, 17, 15421–15432. [Google Scholar]
- Sørensen, A.J. Marine Control Systems. Propulsion and Motion Control of Ships and Ocean Structures; Norwegian University of Science and Technology: Trondheim, Norway, 2012. [Google Scholar]
- Yang, Z.; Seested, G.T. Time-delay system identification using genetic algorithm—Part one: Precise FOPDT model estimation. In IFAC Proceedings Volumes (IFAC-PapersOnline); IFAC: Chengdu, China, 2013; Volume 3, pp. 561–567. [Google Scholar]
- Kristinsson, K.; Dumont, G.A. System Identification and Control Using Genetic Algorithms. IEEE Trans. Syst. MAN Cybern. 1992, 22, 1033–1046. [Google Scholar] [CrossRef]
- Nyarko, E.K.; Scitovski, R. Solving the parameter identification problem of mathematical models using genetic algorithms. Appl. Math. Comput. 2004, 153, 651–658. [Google Scholar] [CrossRef]
- Simon, D. Evolutionary Optimization Algortithms; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-0-470-93741-9. [Google Scholar]
- MathWorks. Genetic Algorithm. Available online: https://es.mathworks.com/help/gads/genetic-algorithm.html (accessed on 5 July 2019).
- Berndt, B.C. Ramanujan’s Notebooks: Part III, 1st ed.; Springer: New York, NY, USA, 1991; ISBN 978-1-4612-0965-2. [Google Scholar]
- MathWorks. Vector Field Histogram. Available online: https://es.mathworks.com/help/nav/ug/vector-field-histograms.html (accessed on 23 May 2019).
- MathWorks. Measure the Performance of Your Code. Available online: https://es.mathworks.com/help/matlab/matlab_prog/measure-performance-of-your-program.html (accessed on 4 June 2020).
- MSI. GT60 2PC Dominator. Available online: https://www.msi.com/Laptop/GT60-2PC-Dominator/Specification (accessed on 10 May 2020).
Navigation Behaviour | Safety and Sizing | Path Predictor | Discrete Decision Space | |||
---|---|---|---|---|---|---|
Methods | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RRSOASECLM | 38 | 239 | 0.9 | 73 | 733 | 1.1 | 123 | 890 | 1.8 | 76 | 776 | 1.0 | 79 | 746 | 2.3 |
RRSOASMUSV | 39 | 246 | 0.9 | 72 | 729 | 0.6 | 125 | 904 | 2.0 | 76 | 770 | 1.2 | 79 | 753 | 1.7 |
Methods | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RRSOASECLM | 38 | 239 | 0.9 | 73 | 733 | 1.1 | 123 | 890 | 1.8 | 76 | 776 | 1.0 | 79 | 746 | 2.3 |
LROABRA [41] | 69 | 346 | 2.4 | 82 | 752 | 0.9 | 145 | 929 | 2.2 | — | — | — | 88 | 758 | 1.5 |
VFH+ [30,76] | 47 | 268 | 1.4 | 78 | 744 | 0.8 | 148 | 950 | 2.6 | 75 | 751 | 1.0 | 92 | 794 | 1.8 |
Characterization of Random Scenarios | Algorithm | Success [%] | Stop [%] | Collision [%] | [s] | [m] | |
---|---|---|---|---|---|---|---|
m/s kn | 79 79 95 | 11 20 05 | 10 01 00 | 181.3 174.3 178.6 | 1247 1234 1252 | 2.36 1.93 1.97 | |
m/s kn | 72 73 92 | 13 26 08 | 15 01 00 | 181.2 173.6 177.6 | 1247 1231 1248 | 2.24 1.90 1.92 | |
m/s kn | 76 72 88 | 13 28 22 | 11 00 00 | 182.1 173.7 178.1 | 1249 1231 1251 | 2.30 1.90 1.94 | |
m/s kn | 85 91 95 | 08 18 05 | 07 01 00 | 131.7 128.1 130.0 | 1232 1231 1235 | 2.31 1.94 1.84 | |
m/s kn | 82 90 97 | 11 09 03 | 07 01 00 | 131.4 128.1 131.1 | 1231 1231 1241 | 2.30 1.96 1.88 | |
m/s kn | 86 90 94 | 10 09 06 | 04 01 00 | 132.1 127.5 130.5 | 1233 1229 1241 | 2.39 1.93 1.88 | |
m/s kn | 81 96 96 | 07 03 04 | 12 01 00 | 103.0 101.3 103.8 | 1209 1221 1234 | 2.29 1.82 1.92 | |
m/s kn | 82 95 97 | 06 04 03 | 12 01 00 | 103.4 101.5 104.6 | 1212 1220 1239 | 2.27 1.84 1.96 | |
m/s kn | 83 95 95 | 05 04 05 | 12 01 00 | 103.5 101.0 105.1 | 1211 1221 1242 | 2.32 1.82 2.00 |
Algorithm | Success [%] | Stop [%] | Collision [%] | [s] | [m] | |
---|---|---|---|---|---|---|
80.67 86.78 94.33 | 09.33 12.33 05.67 | 10.00 00.89 00.00 | 138.9 134.4 137.7 | 1230 1228 1243 | 2.31 1.89 1.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guardeño, R.; López, M.J.; Sánchez, J.; González, A.; Consegliere, A. A Robust Reactive Static Obstacle Avoidance System for Surface Marine Vehicles. Sensors 2020, 20, 6262. https://doi.org/10.3390/s20216262
Guardeño R, López MJ, Sánchez J, González A, Consegliere A. A Robust Reactive Static Obstacle Avoidance System for Surface Marine Vehicles. Sensors. 2020; 20(21):6262. https://doi.org/10.3390/s20216262
Chicago/Turabian StyleGuardeño, Rafael, Manuel J. López, Jesús Sánchez, Alberto González, and Agustín Consegliere. 2020. "A Robust Reactive Static Obstacle Avoidance System for Surface Marine Vehicles" Sensors 20, no. 21: 6262. https://doi.org/10.3390/s20216262
APA StyleGuardeño, R., López, M. J., Sánchez, J., González, A., & Consegliere, A. (2020). A Robust Reactive Static Obstacle Avoidance System for Surface Marine Vehicles. Sensors, 20(21), 6262. https://doi.org/10.3390/s20216262