Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Settings: Dataset 1
2.3. Experimental Settings: Dataset 2
2.4. Data Analysis
2.4.1. EEG Preprocessing
2.4.2. EEG Transformation
2.4.3. Frequency Band Power Estimation
2.4.4. Frequency Band Phase Estimation
2.5. Statistics
3. Results
3.1. Variation of Power Spectrum Density
3.2. Variation of Pre-Stimulus Phase
4. Discussion
4.1. Effects on Power Spectral Density
4.2. Effects on Phase
4.3. Challenges, Limitations, and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brandt, M.E.; Jansen, B.H.; Carbonari, J.P. Pre-stimulus spectral EEG patterns and the visual evoked response. Electroencephalogr. Clin. Neurophysiol. 1991, 80, 16–20. [Google Scholar] [CrossRef]
- Macdonald, J.S.P.; Mathan, S.; Yeung, N. Trial-by-Trial Variations in Subjective Attentional State are Reflected in Ongoing Prestimulus EEG Alpha Oscillations. Front. Psychol. 2011, 2, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzaro, I.; Gordon, E.; Whitmont, S.; Meares, R.; Clarke, S. The Modulation of Late Component Event Related Potentials by Pre-Stimulus EEG Theta Activity in ADHD. Int. J. Neurosci. 2001, 107, 247–264. [Google Scholar] [CrossRef]
- Spencer, K.M.; Polich, J. Poststimulus EEG spectral analysis and P300: Attention, task, and probability. Psychophysiology 1999, 36, 220–232. [Google Scholar] [CrossRef]
- Savers, B.M.; Beagley, H.A.; Henshall, W.R. The Mechanism of Auditory Evoked EEG Responses. Nature 1974, 247, 481–483. [Google Scholar] [CrossRef]
- Babiloni, C.; Vecchio, F.; Bultrini, A.; Luca Romani, G.; Rossini, P.M. Pre- and Poststimulus Alpha Rhythms Are Related to Conscious Visual Perception: A High-Resolution EEG Study. Cereb. Cortex 2005, 16, 1690–1700. [Google Scholar] [CrossRef] [Green Version]
- Tzallas, A.T.; Tsipouras, M.G.; Fotiadis, D.I. Epileptic Seizure Detection in EEGs Using Time–Frequency Analysis. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 703–710. [Google Scholar] [CrossRef]
- Kannathal, N.; Choo, M.L.; Acharya, U.R.; Sadasivan, P.K. Entropies for detection of epilepsy in EEG. Comput. Methods Progr. Biomed. 2005, 80, 187–194. [Google Scholar] [CrossRef]
- Klimesch, W. EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 1997, 26, 319–340. [Google Scholar] [CrossRef]
- Fink, A.; Grabner, R.H.; Neuper, C.; Neubauer, A.C. EEG alpha band dissociation with increasing task demands. Cognit. Brain Res. 2005, 24, 252–259. [Google Scholar] [CrossRef]
- Del Percio, C.; Brancucci, A.; Bergami, F.; Marzano, N.; Fiore, A.; Di Ciolo, E.; Aschieri, P.; Lino, A.; Vecchio, F.; Iacoboni, M.; et al. Cortical alpha rhythms are correlated with body sway during quiet open-eyes standing in athletes: A high-resolution EEG study. NeuroImage 2007, 36, 822–829. [Google Scholar] [CrossRef]
- Lu, J.; McFarland, D.J.; Wolpaw, J.R. Adaptive Laplacian filtering for sensorimotor rhythm-based brain–computer interfaces. J. Neural Eng. 2013, 10, 016002. [Google Scholar] [CrossRef] [Green Version]
- Bashashati, A.; Fatourechi, M.; Ward, R.K.; Birch, G.E. A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 2007, 4, R32–R57. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, R.W.; North, D.; Biver, C. EEG and intelligence: Relations between EEG coherence, EEG phase delay and power. Clin. Neurophysiol. 2005, 116, 2129–2141. [Google Scholar] [CrossRef]
- Fein, G.; Raz, J.; Brown, F.F.; Merrin, E.L. Common reference coherence data are confounded by power and phase effects. Electroencephalogr. Clin. Neurophysiol. 1988, 69, 581–584. [Google Scholar] [CrossRef]
- Ting, W.; Guo-zheng, Y.; Bang-hua, Y.; Hong, S. EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement 2008, 41, 618–625. [Google Scholar] [CrossRef]
- Abootalebi, V.; Moradi, M.H.; Khalilzadeh, M.A. A new approach for EEG feature extraction in P300-based lie detection. Comput. Methods Progr. Biomed. 2009, 94, 48–57. [Google Scholar] [CrossRef]
- Hussain, S.J.; Claudino, L.; Bönstrup, M.; Norato, G.; Cruciani, G.; Thompson, R.; Zrenner, C.; Ziemann, U.; Buch, E.; Cohen, L.G. Sensorimotor Oscillatory Phase-Power Interaction Gates Resting Human Corticospinal Output. Cereb. Cortex 2019, 29, 3766–3777. [Google Scholar] [CrossRef]
- İşcan, Z.; Schurger, A.; Vernet, M.; Sitt, J.D.; Valero-Cabré, A. Pre-stimulus theta power is correlated with variation of motor evoked potential latency: A single-pulse TMS study. Exp. Brain Res. 2018, 236, 3003–3014. [Google Scholar] [CrossRef] [Green Version]
- Torrecillos, F.; Falato, E.; Pogosyan, A.; West, T.; Di Lazzaro, V.; Brown, P. Motor cortex inputs at the optimum phase of beta cortical oscillations undergo more rapid and less variable corticospinal propagation. J. Neurosci. 2020, 40, 369–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Sivathamboo, S.; Goodin, P.; Bonnington, P.; Kwan, P.; Kuhlmann, L.; O’Brien, T.; Perucca, P.; Ge, Z. Epileptic Seizure Detection Using Convolutional Neural Network: A Multi-Biosignal study. In Proceedings of the Australasian Computer Science Week Multiconference, Melbourne, Australia, 4–6 February 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–8. [Google Scholar]
- Faust, O.; Acharya, R.U.; Allen, A.R.; Lin, C.M. Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. IRBM 2008, 29, 44–52. [Google Scholar] [CrossRef]
- Sharmilakanna, P.; Palaniappan, R. Neural Network Classification of Alcohol Abusers Using Power in Gamma Band Frequency of VEP Signals. Multimed. Cyberscape J. 2003, 1, 142–149. [Google Scholar]
- Schack, B.; Vath, N.; Petsche, H.; Geissler, H.-G.; Möller, E. Phase-coupling of theta–gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 2002, 44, 143–163. [Google Scholar] [CrossRef]
- Krusienski, D.J.; McFarland, D.J.; Wolpaw, J.R. An evaluation of autoregressive spectral estimation model order for brain-computer interface applications. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), New York, NY, USA, 30 August–3 September 2006; Volume 2006, pp. 1323–1326. [Google Scholar] [CrossRef]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Chai, R.; Nguyen, H.T.; Marcora, S.M.; Coutts, A.J. Comparing the Effects of Three Cognitive Tasks on Indicators of Mental Fatigue. J. Psychol. 2019, 153, 759–783. [Google Scholar] [CrossRef]
- Wong, S.; Kuhlmann, L. Computationally Efficient Epileptic Seizure Prediction based on Extremely Randomised Trees. In Proceedings of the Proceedings of the Australasian Computer Science Week Multiconference, Melbourne, Australia, 4–6 February 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–3. [Google Scholar]
- Jaworska, N.; Wang, H.; Smith, D.M.; Blier, P.; Knott, V.; Protzner, A.B. Pre-treatment EEG signal variability is associated with treatment success in depression. Neuroimage Clin. 2018, 17, 368–377. [Google Scholar] [CrossRef]
- McFarland, D.J.; Wolpaw, J.R. Sensorimotor rhythm-based brain-computer interface (BCI): Model order selection for autoregressive spectral analysis. J. Neural Eng. 2008, 5, 155–162. [Google Scholar] [CrossRef]
- Xiao-Yu, Y.; Tao-Guang, X.; Shi-Nian, F.; Lei, Z.; Xiao-Juan, B. Classical and modern power spectrum estimation for tune measurement in CSNS RCS. Chin. Phys. C 2013, 37, 117003. [Google Scholar]
- Allen, J.B.; Rabiner, L.R. A unified approach to short-time Fourier analysis and synthesis. Proc. IEEE 1977, 65, 1558–1564. [Google Scholar] [CrossRef]
- Robbins, K.A.; Touryan, J.; Mullen, T.; Kothe, C.; Bigdely-Shamlo, N. How Sensitive are EEG Results to Preprocessing Methods: A Benchmarking Study. bioRxiv 2020, 28, 1081–1090. [Google Scholar] [CrossRef]
- Carvalhaes, C.; de Barros, J.A. The surface Laplacian technique in EEG: Theory and methods. Int. J. Psychophysiol. 2015, 97, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Farina, F.R.; Emek-Savaş, D.D.; Rueda-Delgado, L.; Boyle, R.; Kiiski, H.; Yener, G.; Whelan, R. A comparison of resting state EEG and structural MRI for classifying Alzheimer’s disease and mild cognitive impairment. NeuroImage 2020, 215, 116795. [Google Scholar] [CrossRef]
- Whitehead, K.; Jones, L.; Laudiano-Dray, M.P.; Meek, J.; Fabrizia, L. Altered cortical processing of somatosensory input in pre-term infants who had high-grade germinal matrix-intraventricular haemorrhage. Neuroimage Clin. 2019, 25, 102095. [Google Scholar] [CrossRef]
- Murugappan, M.; Murugappan, S.; Balaganapathy; Gerard, C. Wireless EEG signals based Neuromarketing system using Fast Fourier Transform (FFT). In Proceedings of the 2014 IEEE 10th International Colloquium on Signal Processing and its Applications, Kuala Lumpur, Malaysia, 7–9 March 2014; pp. 25–30. [Google Scholar]
- Ng, B.S.W.; Logothetis, N.K.; Kayser, C. EEG Phase Patterns Reflect the Selectivity of Neural Firing. Cereb Cortex 2013, 23, 389–398. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Piludu, F.; Granata, G.; Romanello, R.; Caulo, M.; Onofrj, V.; Bramanti, P.; Colosimo, C.; Rossini, P.M. “Small World” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: A study via graph theory from EEG data. Brain Imaging Behav. 2017, 11, 473–485. [Google Scholar] [CrossRef]
- Krishna, L.; Ramesh, C. Prediction of Musical Perception using EEG and Functional Connectivity in the Brain. In Proceedings of the Future Technologies Conference (FTC) 2017, Vncouver, BC, Canada, 9–30 November 2017. [Google Scholar]
- Litwin, L. FIR and IIR digital filters. IEEE Potentials 2000, 19, 28–31. [Google Scholar] [CrossRef]
- Hordacre, B.; Ghosh, R.; Goldsworthy, M.R.; Ridding, M.C. Transcranial magnetic stimulation-eeg biomarkers of poststroke upper-limb motor function. J. Stroke Cerebrovasc. Dis. 2019, 28, 104452. [Google Scholar] [CrossRef]
- Chung, S.W.; Rogasch, N.C.; Hoy, K.E.; Sullivan, C.M.; Cash, R.F.; Fitzgerald, P.B. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum. Brain Mapp. 2018, 39, 783–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, B.; Minarik, T.; Liuzzi, G.; Hummel, F.C.; Sauseng, P. EEG oscillatory phase-dependent markers of corticospinal excitability in the resting brain. Biomed Res. Int. 2014, 2014. [Google Scholar] [CrossRef]
- Ktonas, P.Y.; Papp, N. Instantaneous envelope and phase extraction from real signals: Theory, implementation, and an application to EEG analysis. Signal Process. 1980, 2, 373–385. [Google Scholar] [CrossRef]
- Hasan, T. Complex demodulation: Some theory and applications. In Handbook of Statistics; Time Series in the Frequency Domain; Elsevier: Amsterdam, The Netherlands, 1983; Volume 3, pp. 125–156. [Google Scholar]
- Kak, S.C. The discrete Hilbert transform. Proc. IEEE 1970, 58, 585–586. [Google Scholar] [CrossRef]
- EEG Database. Available online: http://kdd.ics.uci.edu/databases/eeg/eeg.data.html (accessed on 16 June 2020).
- Zhang, X.L.; Begleiter, H.; Porjesz, B.; Wang, W.; Litke, A. Event related potentials during object recognition tasks. Brain Res. Bull. 1995, 38, 531–538. [Google Scholar] [CrossRef]
- Trujillo, L.T. K-th Nearest Neighbor (KNN) Entropy Estimates of Complexity and Integration from Ongoing and Stimulus-Evoked Electroencephalographic (EEG) Recordings of the Human Brain. Entropy 2019, 21, 61. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, L. Raw EEG Data Files 2019. Available online: https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/9TTLK8 (accessed on 3 November 2020).
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimigen, O. Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. NeuroImage 2020, 207, 116117. [Google Scholar] [CrossRef]
- Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011, 48, 229–240. [Google Scholar] [CrossRef]
- Wolff, A.; de la Salle, S.; Sorgini, A.; Lynn, E.; Blier, P.; Knott, V.; Northoff, G. Atypical Temporal Dynamics of Resting State Shapes Stimulus-Evoked Activity in Depression—An EEG Study on Rest–Stimulus Interaction. Front. Psychiatr. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Onton, J.; Westerfield, M.; Townsend, J.; Makeig, S. Imaging human EEG dynamics using independent component analysis. Neurosci. Biobehav. Rev. 2006, 30, 808–822. [Google Scholar] [CrossRef]
- Bell, A.J.; Sejnowski, T.J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Bruzzone, L.; Prieto, D.F. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1171–1182. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, B. An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr. Clin. Neurophysiol. 1975, 39, 526–530. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Rogasch, N.C.; Sullivan, C.; Thomson, R.H.; Rose, N.S.; Bailey, N.W.; Fitzgerald, P.B.; Farzan, F.; Hernandez-Pavon, J.C. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software. NeuroImage 2017, 147, 934–951. [Google Scholar] [CrossRef]
- Butterworth, S. On the theory of filter amplifiers. Wirel. Eng. 1930, 7, 536–541. [Google Scholar]
- Harris, F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Burg, J.P. Maximum entropy spectral analysis. In Proceedings of the 37th Annual International Meeting, Soc. of Explor. Geophys, Oklahoma City, OK, USA, 31 October 1967. [Google Scholar]
- Cochran, W.T.; Cooley, J.W.; Favin, D.L.; Helms, H.D.; Kaenel, R.A.; Lang, W.W.; Maling, G.C.; Nelson, D.E.; Rader, C.M.; Welch, P.D. What is the fast Fourier transform? Proc. IEEE 1967, 55, 1664–1674. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. (Eds.) Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. ISBN 978-3-642-00296-0. [Google Scholar]
- Tandle, A.; Jog, N.; D’cunha, P.; Chheta, M. Classification of artefacts in EEG signal recordings and EOG artefact removal using EOG subtraction. Commun. Appl. Electron. 2016, 4, 12–19. [Google Scholar] [CrossRef]
- Kumar, S.; Riddoch, M.J.; Humphreys, G. Mu rhythm desynchronization reveals motoric influences of hand action on object recognition. Front. Hum. Neurosci. 2013, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Oerder, M.; Meyr, H. Digital filter and square timing recovery. IEEE Trans. Commun. 1988, 36, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Waser, M.; Benke, T.; Dal-Bianco, P.; Garn, H.; Mosbacher, J.A.; Ransmayr, G.; Schmidt, R.; Seiler, S.; Sorensen, H.B.D.; Jennum, P.J. Neuroimaging markers of global cognition in early Alzheimer’s disease: A magnetic resonance imaging–electroencephalography study. Brain Behav. 2019, 9, e01197. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Tucker, D.M.; Murias, M. Estimating the spatial Nyquist of the human EEG. Behav. Res. MethodsInstrum. Comput. 1998, 30, 8–19. [Google Scholar] [CrossRef] [Green Version]
Factor | Model Number | Band | Dataset 1 | Dataset 2 | ||
---|---|---|---|---|---|---|
p | F | p | F | |||
Artifact removed | 1 | Theta | <0.001 * | 23.21 | 0.0071 * | 7.24 |
2 | Mu | 0.025 * | 5.03 | 0.2498 | 1.32 | |
3 | Beta | <0.001 * | 17.53 | <0.001 * | 35.78 | |
4 | Gamma | <0.001 * | 1347.72 | <0.001 * | 48.9 | |
EEG transformation | 5 | Theta | <0.001 * | 5341.06 | <0.001 * | 580.31 |
6 | Mu | <0.001 * | 2777.1 | <0.001 * | 1084.61 | |
7 | Beta | <0.001 * | 5470.85 | <0.001 * | 1337.18 | |
8 | Gamma | <0.001 * | 6507.23 | <0.001 * | 915.71 | |
Filter | 9 | Theta | 0.2208 | 1.5 | <0.001 * | 73 |
10 | Mu | 0.4626 | 0.54 | <0.001 * | 168.87 | |
11 | Beta | <0.001 * | 11.43 | <0.001 * | 169.21 | |
12 | Gamma | <0.001 * | 1320.39 | <0.001 * | 3175.94 | |
Time window | 13 | Theta | 0.3924 | 0.73 | <0.001 * | 106.38 |
14 | Mu | 0.5058 | 0.44 | 0.002 * | 9.53 | |
15 | Beta | <0.001 * | 19.87 | <0.001 * | 195.56 | |
16 | Gamma | <0.001 * | 720.45 | <0.001 * | 1705.33 | |
PSD estimation method | 17 | Theta | <0.001 * | 1546.66 | <0.001 * | 9500.41 |
18 | Mu | <0.001 * | 1602.82 | <0.001 * | 3486.92 | |
19 | Beta | <0.001 * | 12,867.49 | <0.001 * | 61,531.19 | |
20 | Gamma | <0.001 * | 86,225.6 | <0.001 * | 161,573.05 |
Category | Factor | Model Number | Band | Dataset 1 | Dataset 2 | ||
---|---|---|---|---|---|---|---|
p | F | p | F | ||||
Peaks | Artifact removal | 1 | Theta | 0.8540 | 0.03 | 0.9835 | 0 |
2 | Mu | 0.9414 | 0.01 | 0.8791 | 0.02 | ||
3 | Beta | 0.7915 | 0.07 | 0.9774 | 0 | ||
4 | Gamma | 0.7467 | 0.1 | 0.8507 | 0.04 | ||
EEG transformation | 5 | Theta | 0.0016 * | 6.43 | 0.7114 | 0.34 | |
6 | Mu | 0.4775 | 0.74 | 0.7152 | 0.34 | ||
7 | Beta | 0.4565 | 0.78 | 0.8154 | 0.2 | ||
8 | Gamma | 0.5925 | 0.52 | <0.0001 * | 37.2 | ||
Filter | 9 | Theta | <0.0001 * | 64.94 | <0.0001 * | 199.87 | |
10 | Mu | <0.0001 * | 28.92 | <0.0001 * | 124.03 | ||
11 | Beta | <0.0001 * | 19.76 | <0.0001 * | 91.64 | ||
12 | Gamma | 0.0534 | 3.74 | <0.0001 * | 248.94 | ||
Troughs | Artifact removal | 13 | Theta | 0.4906 | 0.48 | 0.4763 | 0.51 |
14 | Mu | 0.918 | 0.01 | 0.8828 | 0.02 | ||
15 | Beta | 0.9619 | 0 | 0.9739 | 0 | ||
16 | Gamma | 0.3493 | 0.88 | 0.8176 | 0.05 | ||
EEG transformation | 17 | Theta | <0.0001 * | 16.09 | 0.3556 | 1.03 | |
18 | Mu | 0.3422 | 1.07 | 0.7311 | 0.31 | ||
19 | Beta | 0.8887 | 0.12 | 0.119 | 2.13 | ||
20 | Gamma | 0.0096 * | 4.65 | <0.0001 * | 137.21 | ||
Filter | 21 | Theta | 0.0785 | 3.1 | <0.0001 * | 162.35 | |
22 | Mu | 0.0095 * | 6.74 | <0.0001 * | 129.54 | ||
23 | Beta | <0.0001 * | 15.2 | <0.0001 * | 94.82 | ||
24 | Gamma | 0.1117 | 2.53 | <0.0001 * | 161.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, R.-u.; Zhao, H.; Goodwin, A.; Kavehei, O.; McEwan, A. Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals. Sensors 2020, 20, 6285. https://doi.org/10.3390/s20216285
Alam R-u, Zhao H, Goodwin A, Kavehei O, McEwan A. Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals. Sensors. 2020; 20(21):6285. https://doi.org/10.3390/s20216285
Chicago/Turabian StyleAlam, Raquib-ul, Haifeng Zhao, Andrew Goodwin, Omid Kavehei, and Alistair McEwan. 2020. "Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals" Sensors 20, no. 21: 6285. https://doi.org/10.3390/s20216285
APA StyleAlam, R. -u., Zhao, H., Goodwin, A., Kavehei, O., & McEwan, A. (2020). Differences in Power Spectral Densities and Phase Quantities Due to Processing of EEG Signals. Sensors, 20(21), 6285. https://doi.org/10.3390/s20216285