Review of MAC Protocols for Vehicular Ad Hoc Networks †
Abstract
:1. Introduction
- The MAC protocols and the typical standards for VANETs are thoroughly reviewed.
- The advantages and disadvantages of the current MAC protocols are discussed based on 7 aspects, including control coordinators, access competition mechanism, communication overhead, multi-channel mechanism, dynamic access interval, time synchronization mechanism, and the number of transceivers.
- The research gaps and potential future work are summarized.
2. Related Work
3. Spectrum Allocation for VANETs
3.1. Frequency Band
3.2. Multiple Channels
3.3. Modulation
3.4. Access Management
4. Single-Channel MAC Protocols
4.1. Distributed Single-Channel MAC Protocols
4.1.1. IEEE 802.11p
4.1.2. DTMAC
4.1.3. MoMAC
4.2. Centralized Single-Channel MAC Protocols
4.2.1. VAT-MAC
4.2.2. CBT
4.2.3. SAFE-MAC
4.2.4. PDMAC
5. Multi-Channel MAC Protocols
5.1. Distributed Multi-Channel MAC Protocols
5.1.1. IEEE 1609.4
5.1.2. PTMAC
5.1.3. APDM
5.1.4. SD-TDMA
5.1.5. PCS-AMMAC
5.1.6. BB-MAC
5.2. Centralized Multi-Channel MAC Protocols
5.2.1. VeMAC
5.2.2. IC-MAC
5.2.3. VEC-MAC
5.2.4. ETCM
5.2.5. CADMA
6. Comparison and Summary
- Control Coordinators
- Multi-Channel Mechanism
- Access Competition Mechanism
- Communication Overhead
- Dynamic Access Interval
- Time Synchronization Mechanism
- Number of Transceivers
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maalej, Y.; Abderrahim, A.; Guizani, M.; Hamdaoui, B.; Balti, E. Advanced activity-aware multi-channel operations 1609.4 in vanets for vehicular clouds. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Latif, S.; Mahfooz, S.; Jan, B.; Ahmad, N.; Cao, Y.; Asif, M. A comparative study of scenario-driven multi-hop broadcast protocols for VANETs. Veh. Commun. 2018, 12, 88–109. [Google Scholar] [CrossRef]
- Luo, G.; Li, J.; Zhang, L.; Yuan, Q.; Liu, Z.; Yang, F. sdnMAC: A software-defined network inspired MAC protocol for cooperative safety in VANETs. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2011–2024. [Google Scholar] [CrossRef]
- Haider, S.; Abbas, G.; Abbas, Z.H. VLCS: A Novel Clock Synchronization Technique for TDMA-based MAC Protocols in VANETs. In Proceedings of the 2019 4th International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), Karachi, Pakistan, 10–11 December 2019; pp. 1–6. [Google Scholar]
- Cunha, F.; Villas, L.; Boukerche, A.; Maia, G.; Viana, A.; Mini, R.A.; Loureiro, A.A. Data communication in VANETs: Protocols, applications and challenges. Ad Hoc Netw. 2016, 44, 90–103. [Google Scholar] [CrossRef]
- IEEE Computer Society LAN MAN Standards Committee. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; IEEE: New York, NY, USA, 1997. [Google Scholar]
- Molina-Masegosa, R.; Gozalvez, J.; Sepulcre, M. Comparison of IEEE 802.11p and LTE-V2X: An Evaluation with Periodic and Aperiodic Messages of Constant and Variable Size. IEEE Access 2020, 8, 121526–121548. [Google Scholar] [CrossRef]
- Hadded, M.; Muhlethaler, P.; Laouiti, A.; Zagrouba, R.; Saidane, L.A. TDMA-based MAC protocols for vehicular ad hoc networks: A survey, qualitative analysis, and open research issues. IEEE Commun. Surv. Tutor. 2015, 17, 2461–2492. [Google Scholar] [CrossRef] [Green Version]
- Ghebleh, R. A comparative classification of information dissemination approaches in vehicular ad hoc networks from distinctive viewpoints: A survey. Comput. Netw. 2018, 131, 15–37. [Google Scholar] [CrossRef]
- Hu, J.; Lyu, W.; Zhong, S.; Huang, J. Motion Prediction Based TDMA Protocol in VANETs. Electronics 2020, 9, 1792. [Google Scholar] [CrossRef]
- Bang, J.-H.; Lee, J.-R. Collision Avoidance Method Using Vector-Based Mobility Model in TDMA-Based Vehicular Ad Hoc Networks. Appl. Sci. 2020, 10, 4181. [Google Scholar] [CrossRef]
- Nguyen, V.; Kim, O.T.T.; Pham, C.; Oo, T.Z.; Tran, N.H.; Hong, C.S.; Huh, E.N. A survey on adaptive multi-channel MAC protocols in VANETs using Markov models. IEEE Access 2018, 6, 16493–16514. [Google Scholar] [CrossRef]
- Jayaraj, V.; Hemanth, C.; Sangeetha, R.G. A survey on hybrid MAC protocols for vehicular ad-hoc networks. Veh. Commun. 2016, 6, 29–36. [Google Scholar] [CrossRef]
- Djiroun, F.Z.; Djenouri, D. MAC Protocols with Wake-Up Radio for Wireless Sensor Networks: A Review. IEEE Commun. Surv. Tutor. 2017, 19, 587–618. [Google Scholar] [CrossRef]
- Huang, J.; Li, Q.; Zhong, S.; Liu, L.; Zhong, P.; Wang, J.; Ye, J. Synthesizing Existing CSMA and TDMA Based MAC Protocols for VANETs. Sensors 2017, 17, 338. [Google Scholar] [CrossRef] [PubMed]
- Hadded, M.; Muhlethaler, P.; Laouiti, A. TDMA scheduling strategies for vehicular ad hoc networks: From a distributed to a centralized approach. In Proceedings of the 2018 26th International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, 13–15 September 2018; pp. 1–6. [Google Scholar]
- Alinci, M.; Spaho, E.; Lala, A.; Kolici, V. Clustering Algorithms in MANETs: A Review. In Proceedings of the 2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems, Blumenau, Brazil, 8–10 July 2015; pp. 330–335. [Google Scholar]
- Johari, S.; Krishna, M.B. TDMA based contention-free MAC protocols for vehicular ad hoc networks: A survey. Veh. Commun. 2020, 100308, 2096–2214. [Google Scholar] [CrossRef]
- Gupta, N.; Prakash, A.; Tripathi, R. Medium access control protocols for safety applications in vehicular ad-hoc network: A classification and comprehensive survey. Veh. Commun. 2015, 2, 223–237. [Google Scholar] [CrossRef]
- Campolo, C.; Molinaro, A. Multichannel communications in vehicular ad hoc networks: A survey. IEEE Commun. Mag. 2013, 51, 158–169. [Google Scholar] [CrossRef]
- Hadded, M.; Laouiti, A.; Muhlethaler, P.; Saidane, L.A. An infrastructure-free slot assignment algorithm for reliable broadcast of periodic messages in vehicular ad hoc networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; pp. 1–7. [Google Scholar]
- Lyu, F.; Zhu, H.; Zhou, H.; Qian, L.; Xu, W.; Li, M.; Shen, X. MoMAC: Mobility-aware and collision-avoidance MAC for safety applications in VANETs. IEEE Trans. Veh. Technol. 2018, 67, 10590–10602. [Google Scholar] [CrossRef]
- Omar, H.A.; Zhuang, W.; Li, L. VeMAC: A TDMA-based MAC protocol for reliable broadcast in VANETs. IEEE Trans. Mobile Comput. 2012, 12, 1724–1736. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Tan, G.; Yu, C.; Ding, N.; Zhang, F. APDM: An adaptive multi-priority distributed multichannel MAC protocol for vehicular ad hoc networks in unsaturated conditions. Comput. Commun. 2017, 104, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Wang, M.; Wu, Y.; Lin, X. Adaptive multichannel MAC protocol based on SD-TDMA mechanism for the vehicular ad hoc network. IET Commun. 2018, 12, 1509–1516. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, X.; Zhang, M. A black-burst based time slot acquisition scheme for the hybrid TDMA/CSMA multichannel MAC in VANETs. IEEE Wirel. Commun. Lett. 2018, 8, 137–140. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, L.; Fan, P.; Fang, S.; Hu, Y. An improved coordinated multichannel MAC scheme by efficient use of idle service channels for VANETs. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar]
- Mao, Y.; Yan, F.; Shen, L. Multi-round elimination contention-based multi-channel MAC scheme for vehicular ad hoc networks. IET Commun. 2017, 11, 421–427. [Google Scholar] [CrossRef]
- Nguyen, V.; Pham, C.; Oo, T.Z.; Tran, N.H.; Huh, E.N.; Hong, C.S. MAC protocols with dynamic interval schemes for VANETs. Veh. Commun. 2019, 15, 40–62. [Google Scholar] [CrossRef]
- Song, C.; Tan, G.; Yu, C. An Efficient and QoS Supported Multichannel MAC Protocol for Vehicular Ad Hoc Networks. Sensors 2017, 17, 2293. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, K.A.; Zhao, L.; Mark, J.W.; Shen, X.; Niu, Z. Distributed Multichannel and Mobility-Aware Cluster-Based MAC Protocol for Vehicular Ad Hoc Networks. IEEE Trans. Veh. Technol. 2013, 62, 3886–3902. [Google Scholar] [CrossRef]
- Shahin, N.; Kim, Y.T. An enhanced TDMA cluster-based MAC (ETCM) for multichannel vehicular networks. In Proceedings of the 2016 International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), Cairo, Egypt, 11–13 April 2016; pp. 1–8. [Google Scholar]
- Shahen Shah, A.F.M.; Ilhan, H.; Tureli, U. RECV-MAC: A novel reliable and efficient cooperative MAC protocol for VANETs. IET Commun. 2019, 13, 2541–2549. [Google Scholar] [CrossRef]
- Teixeira, F.A.; Silva, V.F.; Leoni, J.L.; Macedo, D.F.; Nogueira, J.M. Vehicular networks using the IEEE 802.11 p standard: An experimental analysis. Veh. Commun. 2014, 1, 91–96. [Google Scholar]
- Morgan, Y.L. Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Commun. Surv. Tutor. 2010, 12, 504–518. [Google Scholar]
- Kim, J.-W.; Kim, J.-W.; Jeon, D.-K. A Cooperative Communication Protocol for QoS Provisioning in IEEE 802.11p/Wave Vehicular Networks. Sensors 2018, 18, 3622. [Google Scholar] [CrossRef] [Green Version]
- Kühlmorgen, S.; Lu, H.; Festag, A.; Kenney, J.; Gemsheim, S.; Fettweis, G. Evaluation of Congestion-Enabled Forwarding with Mixed Data Traffic in Vehicular Communications. IEEE Trans. Intell. Transp. Syst. 2020, 21, 233–247. [Google Scholar] [CrossRef]
- Haq, A.U.; Liu, K. Review of TDMA-based MAC protocols for vehicular ad hoc networks. In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; pp. 459–467. [Google Scholar]
- Schaffnit, T. Automotive Standardization of Vehicle Networks. Veh. Netw. Automot. Appl. Beyond 2010, 2, 149. [Google Scholar]
- Yao, Y.; Rao, L.; Liu, X. Performance and Reliability Analysis of IEEE 802.11p Safety Communication in a Highway Environment. IEEE Trans. Veh. Technol. 2013, 62, 4198–4212. [Google Scholar] [CrossRef]
- Karabulut, M.A.; Shah, A.F.M.S.; Ilhan, H. OEC-MAC: A Novel OFDMA Based Efficient Cooperative MAC Protocol for VANETS. IEEE Access 2020, 8, 94665–94677. [Google Scholar] [CrossRef]
- Nardini, G.; Virdis, A.; Campolo, C.; Molinaro, A.; Stea, G. Cellular-V2X Communications for Platooning: Design and Evaluation. Sensors 2018, 18, 1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehrsitz, T.; Kellerer, W. QoS and robustness of priority-based MAC protocols for the in-car power line communication. Veh. Commun. 2017, 9, 53–63. [Google Scholar] [CrossRef]
- Liu, W.; He, X.; Huang, Z.; Ji, Y. Transmission Capacity Characterization in VANETs with Enhanced Distributed Channel Access. Electronics 2019, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- ETSI TC ITS. European Profile Standard for the Physical and Medium Access Control Layer of Intelligent Transport Systems Operating in the 5 GHz Frequency Band; ETSI ES 202 663; ETSI: Sophia Antipolis, France, 2009. [Google Scholar]
- Kudoh, Y. DSRC standards for multiple applications. In Proceedings of the 11th World Congress on ITS, Nagoya, Japan, 18–24 October 2004. [Google Scholar]
- Li, S.; Liu, Y.; Wang, J. An Efficient Broadcast Scheme for Safety-Related Services in Distributed TDMA-Based VANETs. IEEE Commun. Lett. 2019, 23, 1432–1436. [Google Scholar] [CrossRef]
- Thota, J.; Abdullah, N.F.; Doufexi, A.; Armour, S. V2V for Vehicular Safety Applications. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2571–2585. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, M.; Lee, T.J. Coordinated multichannel MAC protocol for vehicular ad hoc networks. IEEE Trans. Veh. Technol. 2016, 65, 6508–6517. [Google Scholar] [CrossRef]
- Khan, U.A.; Lee, S.S. Multi-Layer Problems and Solutions in VANETs: A Review. Electronics 2019, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Gawad, M.A.; Elsharief, M.; Kim, H. A Comparative Experimental Analysis of Channel Access Protocols in Vehicular Networks. IEEE Access 2019, 7, 149433–149443. [Google Scholar] [CrossRef]
- Guo, W.; Huang, L.; Chen, L.; Xu, H.; Xie, J. An adaptive collision-free MAC protocol based on TDMA for inter-vehicular communication. In Proceedings of the 2012 International Conference on Wireless Communications and Signal Processing (WCSP), Huangshan, China, 25–27 October 2012; pp. 1–6. [Google Scholar]
- Hadded, M.; Laouiti, A. A Study on Priority-based Centralized TDMA Slot Scheduling Algorithm for Vehicular Ad hoc NETworks. In Proceedings of the International Journal of Digital Information and Wireless Communications (IJDIWC), Hong Kong, China, 1 April 2018; pp. 124–129. [Google Scholar]
- Cao, Y.; Zhang, H.; Zhou, X.; Yuan, D. A scalable and cooperative MAC protocol for control channel access in VANETs. IEEE Access 2017, 5, 9682–9690. [Google Scholar] [CrossRef]
- Ma, M.; Liu, K.; Zhang, T. Review of multi-channel MAC protocols for vehicular ad hoc networks. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 1135–1141. [Google Scholar]
- Zhang, R.; Cheng, X.; Yang, L.; Shen, X.; Jiao, B. A novel centralized TDMA-based scheduling protocol for vehicular networks. IEEE Trans. Intell. Transp. Syst. 2014, 16, 411–416. [Google Scholar] [CrossRef]
- Cao, S.; Lee, V.C. A novel adaptive TDMA-based MAC protocol for VANETs. IEEE Commun. Lett. 2017, 22, 614–617. [Google Scholar] [CrossRef]
- Sheu, T.L.; Lin, Y.H. A Cluster-Based TDMA System for Inter-Vehicle Communications. J. Inf. Sci. Eng. 2014, 30, 213–231. [Google Scholar]
- Siddik, M.A.; Moni, S.S.; Alam, M.S.; Johnson, W.A. SAFE-MAC: Speed Aware Fairness Enabled MAC Protocol for Vehicular Ad-hoc Networks. Sensors 2019, 19, 2405. [Google Scholar] [CrossRef] [Green Version]
- Abbas, G.; Abbas, Z.H.; Haider, S.; Baker, T.; Boudjit, S.; Muhammad, F. PDMAC: A Priority-Based Enhanced TDMA Protocol for Warning Message Dissemination in VANETs. Sensors 2020, 20, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boban, M.; Festag, A. Service-actuated multi-channel operation for vehicular communications. Comput. Commun. 2016, 93, 17–26. [Google Scholar] [CrossRef]
- Cao, S.; Lee, V.C.S. A Novel Coordinated Medium Access Control Scheme for Vehicular Ad Hoc Networks in Multichannel Environment. IEEE Access 2019, 7, 84333–84348. [Google Scholar] [CrossRef]
- IEEE 1609 Working Group. IEEE Standard for Wireless Access in Vehicular Environments (WAVE)—Multi-Channel Operation; IEEE Std 1609.4-2016; IEEE Standards Associations: New York, NY, USA, 2016. [Google Scholar]
- Hirai, T.; Murase, T. Performance Evaluations of PC5-based Cellular-V2X Mode 4 for Feasibility Analysis of Driver Assistance Systems with Crash Warning. Sensors 2020, 20, 2950. [Google Scholar] [CrossRef]
- Boulila, N.; Hadded, M.; Laouiti, A.; Saidane, L.A. QCH-MAC: A QoS-aware centralized hybrid MAC protocol for vehicular ad hoc networks. In Proceedings of the 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), Krakow, Poland, 16–18 May 2018; pp. 55–62. [Google Scholar]
- Nguyen, V.; Oo, T.Z.; Chuan, P.; Hong, C.S. An Efficient Time Slot Acquisition on the Hybrid TDMA/CSMA Multichannel MAC in VANETs. IEEE Commun. Lett. 2016, 20, 970–973. [Google Scholar] [CrossRef]
- Almalag, M.S.; Olariu, S.; Weigle, M.C. TDMA cluster-based MAC for VANETs (TC-MAC). In Proceedings of the 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), San Francisco, CA, USA, 25–28 June 2012; pp. 1–6. [Google Scholar]
- Jiang, X.; Du, D.H. PTMAC: A prediction-based TDMA MAC protocol for reducing packet collisions in VANET. IEEE Trans. Veh. Technol. 2016, 65, 9209–9223. [Google Scholar] [CrossRef]
- Tripti, C.; Manoj, R. An asynchronous multi-channel MAC for improving channel utilization in VANET. Procedia Comput. Sci. 2017, 115, 607–614. [Google Scholar]
- Chen, C.; Liu, L.; Qiu, T.; Wu, D.O.; Ren, Z. Delay-Aware Grid-Based Geographic Routing in Urban VANETs: A Backbone Approach. IEEE/ACM Trans. Net. 2019, 27, 2324–2337. [Google Scholar] [CrossRef]
- Lin, Z.; Tang, Y. Distributed Multi-Channel MAC Protocol for VANET: An Adaptive Frame Structure Scheme. IEEE Access 2019, 7, 12868–12878. [Google Scholar] [CrossRef]
- Omar, H.A.; Zhuang, W.; Abdrabou, A.; Li, L. Performance evaluation of VeMAC supporting safety applications in vehicular networks. IEEE Trans. Emerg. Topics Comput. 2013, 1, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Babu, S.; Patra, M.; Murthy, C.S.R. A novel context-aware variable interval MAC protocol to enhance event-driven message delivery in IEEE 802.11 p/WAVE vehicular networks. Veh. Commun. 2015, 2, 172–183. [Google Scholar]
- Ji, S.; Kim, J.; You, C. CADMA: Collision-avoidance directional medium access for vehicular ad hoc networks. Wirel. Netw. 2016, 22, 1181–1197. [Google Scholar] [CrossRef]
- Nguyen, V.; Khanh, T.T.; Oo, T.Z.; Tran, N.H.; Huh, E.; Hong, C.S. A Cooperative and Reliable RSU-Assisted IEEE 802.11p-Based Multi-Channel MAC Protocol for VANETs. IEEE Access 2019, 7, 107576–107590. [Google Scholar] [CrossRef]
- Liu, K.; Wang, R.; Yue, C.; Liu, F.; Lu, T.; Xiong, Z. Interference Range-Reduced Cooperative Multiple Access with Optimal Relay Selection for Large Scale Wireless Networks. Sensors 2019, 19, 2565. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.; Anh Khoa, T.; Zin, T.; Tran, N.; Seon Hong, C.; Huh, E.-N. Time Slot Utilization for Efficient Multi-Channel MAC Protocol in VANETs. Sensors 2018, 18, 3028. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.K.; Kumar, R. An optimized multichannel MAC scheme with dynamic control channel interval in dense VANET. Int. J. Inf. Tecnol. 2019, 11, 411–419. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Wang, J.; Ge, Y.; Deng, L.; Deng, W. TCGMAC: A TDMA-based MAC protocol with collision alleviation based on slot declaration and game theory in VANETS. Trans. Emerg. Telecommun. Technol. 2019, 30, 1–12. [Google Scholar] [CrossRef]
- Lyu, F.; Zhu, H.; Zhou, H.; Xu, W.; Zhang, N.; Li, M.; Shen, X. SS-MAC: A novel time slot-sharing MAC for safety messages broadcasting in VANETs. IEEE Trans. Veh. Technol. 2017, 67, 3586–3597. [Google Scholar] [CrossRef]
- Almohammedi, A.A.; Noordin, N.K.; Sali, A.; Hashim, F.; Balfaqih, M. An Adaptive Multi-Channel Assignment and Coordination Scheme for IEEE 802.11p/1609.4 in Vehicular Ad-Hoc Networks. IEEE Access 2018, 6, 2781–2802. [Google Scholar] [CrossRef]
US | Europe | Japan | China | |
---|---|---|---|---|
Standard | WAVE | ITS-G5 | STD-T75 | C-V2X |
Frequency band (GHz) | 5.9 | 5.8 | 5.8 | 5.9 |
Frequency range (GHz) | 5.850–5.925 | 5.855–5.905 | 5.770–5.850 | 5.905–5.925 |
Total allocated range (MHz) | 75 | 50 | 80 | 20 |
Number of channels | 7 (1 CCH) | 5 (1 CCH) | 14 | 1 |
Data rate (Mbps) | 6–27 | 6, 12 | 1 or 4 | 100 |
Modulation | OFDM | 2ASK/2PSK | 2ASK/QPSK | QPSK/16QAM/64QAM/256QAM |
Number of transceivers | Single | Single | Single | Single |
DTMAC | MoMAC | PTMAC | APDM | SD-TDMA MAC | PCS-AMMAC | BB-MAC | |
---|---|---|---|---|---|---|---|
References | [21] | [22] | [68] | [24] | [25] | [69] | [26] |
Published | 2016 | 2018 | 2016 | 2017 | 2018 | 2017 | 2019 |
Coordinator | - | - | - | - | - | - | - |
Multi-channel | N | N | Y | Y | Y | Y | Y |
Mechanism | Contention-free | Contention-free | Contention-free | Contention-based | Contention-free | Contention-based | Hybrid |
Access collision | Not | Not | Solved | Not | Solved | Solved | Solved |
Overhead | High | High | High | High | Low | Low | Middle |
Dynamic access interval | N | N | N | Y | N | N | Y |
Time synchronization | Y | Y | Y | Y | Y | N | Y |
Transceivers | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Simulator | NS2 | Sumo | Matlab | NS3 | NS2 | Matlab | OMNET++ |
VAT-MAC | CBT | SAFE-MAC | PDMAC | VeMAC | IC-MAC | VEC-MAC | ETCM | CADMA | |
---|---|---|---|---|---|---|---|---|---|
References | [57] | [58] | [59] | [60] | [23] | [27] | [28] | [32] | [74] |
Published | 2018 | 2014 | 2019 | 2020 | 2013 | 2018 | 2017 | 2016 | 2016 |
Coordinator | RSU | CH | RSU | CH | - | RSU | RSU | CH | CH |
Multi-channel | N | N | N | N | Y | Y | Y | Y | Y |
Mechanism | Contention-free | Contention-free | Contention-based | Contention-free | Contention-free | Hybrid | Hybrid | Contention-free | Contention-free |
Access collision | Not | Solved | Solved | Not | Not | Not | Solved | Not | Not |
Overhead | Middle | Low | Low | Low | High | Low | Low | Low | Middle |
Dynamic access interval | Y | N | N | N | N | Y | Y | N | N |
Time synchronization | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Transceivers | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
Simulator | NS2, Sumo | NS2 | - | Matlab | Matlab, NS2 | - | Matlab | NS3 | Matlab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Liu, K.; Luo, X.; Zhang, T.; Liu, F. Review of MAC Protocols for Vehicular Ad Hoc Networks. Sensors 2020, 20, 6709. https://doi.org/10.3390/s20236709
Ma M, Liu K, Luo X, Zhang T, Liu F. Review of MAC Protocols for Vehicular Ad Hoc Networks. Sensors. 2020; 20(23):6709. https://doi.org/10.3390/s20236709
Chicago/Turabian StyleMa, Mengyuan, Kai Liu, Xiling Luo, Tao Zhang, and Feng Liu. 2020. "Review of MAC Protocols for Vehicular Ad Hoc Networks" Sensors 20, no. 23: 6709. https://doi.org/10.3390/s20236709