The Characterization Pattern of Overburden Deformation with Distributed Optical Fiber Sensing: An Analogue Model Test and Extensional Analysis
Abstract
:1. Introduction
2. Analogue Model Test of Overburden Deformation by DOFS Monitoring
2.1. Basic Principle of BOTDA Technology
2.2. Setup of Analogue Model and DOFS Monitoring System
3. Measurement Results Analysis
3.1. Strain Profiles
3.2. Disassemble Analysis of Strain Distribution
3.3. Analysis of Strain Distribution Characteristics
4. Discussion of DOFS Monitoring for Overburden Deformation
4.1. Comparison of Supplement Analogue Model Tests
4.1.1. Experimental Setup
4.1.2. Verification of Overburden Deformation Development
4.1.3. Reliability Validation of DOFS Monitoring
4.2. Standardization Model of Overburden Deformation Based on DOFS Monitoring
4.3. Influence of Optical Fiber to Overburden Deformation by Numerical Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qian, M.G.; Xu, J. Behaviors of strata movement in coal mining. J. China Coal Soc. 2019, 44, 973–984. (In Chinese) [Google Scholar]
- Wang, J.C. Sustainable coal mining based on mining ground control. J. Min. Strat. Control Eng. 2019, 1, 1–8. (In Chinese) [Google Scholar]
- Ju, J.; Xu, J. Surface stepped subsidence related to top-coal caving longwall mining of extremely thick coal seam under shallow cover. Int. J. Rock Mech. Min. Sci. 2015, 78, 27–35. [Google Scholar] [CrossRef]
- Erik, W.; Ryan, M.; William, J.; Conrad, J. Ground control monitoring of retreat room–and–pillar mine in central Appalachia. Int. J. Min. Sci. Technol. 2017, 27, 65–69. [Google Scholar]
- Ye, Q.; Wang, G.; Jia, Z.; Zheng, C.; Wang, W. Similarity simulation of mining-crack-evolution characteristics of overburden strata in deep coal mining with large dip. J. Pet. Sci. Eng. 2018, 165, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Yang, T.; Bai, H.; Pathegama, G.R. Longwall mining–induced damage and fractures: Field measurements and simulation using FDM and dem coupled method. Int. J. Geomech. 2018, 18, 1–19. [Google Scholar] [CrossRef]
- Jia, H.; Pan, K.; Liu, S.; Peng, B.; Fan, K. Evaluation of the mechanical instability of mining roadway overburden: Research and applications. Energies 2019, 12, 4265. [Google Scholar] [CrossRef] [Green Version]
- Heritage, Y. Mechanics of rib deformation—Observations and monitoring in Australian coal mines. Int. J. Min. Sci. Technol. 2019, 29, 119–129. [Google Scholar] [CrossRef]
- Xia, K.; Chen, C.; Deng, Y.; Xiao, G.; Zheng, Y.; Liu, X.; Fu, H.; Song, X.; Chen, L. In situ monitoring and analysis of the mining-induced deep ground movement in a metal mine. Int. J. Rock Mech. Min. Sci. 2018, 109, 32–51. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Hu, M.; Zhou, X.; Huo, Y. Dynamic monitoring of the mining-induced fractured zone in overburden strata, based on geo-electrical characteristics. Arab. J. Geosci. 2019, 12, 1–12. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, P.; Wu, R.; Hu, X. Dynamic monitoring study on the characteristics of deformation and failure of extra-thick coal seam floor in deep mining. J. Appl. Geophys. 2019, 163, 132–138. [Google Scholar] [CrossRef]
- Zhu, H.H.; Shi, B.; Yan, J.F.; Zhang, J.; Wang, J. Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network. Eng. Geol. 2015, 186, 34–43. [Google Scholar] [CrossRef]
- Zeni, L.; Picarelli, L.; Avolio, B.; Coscetta, A.; Papa, R.; Zeni, G.; Di Maio, R.; Vassallo, A.; Minardo, A. Brillouin optical time-domain analysis for geotechnical monitoring. J. Rock Mech. Geotech. Eng. 2015, 7, 458–462. [Google Scholar] [CrossRef] [Green Version]
- Kersey, A.; Dandridge, A. Applications of fiber-optic sensors. IEEE Trans. Compon. Hybrids Manuf. Technol. 2002, 13, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Motil, A.; Bergman, A.; Tur, M. State of the art of Brillouin fiber-optic distributed sensing. Opt. Laser Technol. 2015, 78, 81–103. [Google Scholar] [CrossRef]
- Jenkins, R.B.; Joyce, P.; Kong, A.; Nelson, C. Discerning localized thermal heating from mechanical strain using an embedded distributed optical fiber sensor network. Sensors 2020, 20, 2583. [Google Scholar] [CrossRef]
- Zhu, H.H.; Shi, B.; Zhang, C.C. Current progress and trends in opto-electronic sensor-based monitoring in geo-engineering: A summary of 6th OSMG-2017. J. Eng. Geol. 2020, 28, 178–188. (In Chinese) [Google Scholar]
- Fang, X.; Liang, M.; Li, S.; Zhang, L.; Yan, H.; Xie, X.; Yu, R.; Wu, G.; Lv, J. Key technologies of multi-parameter accurate perception and security decision in intelligent working face. J. China Coal Soc. 2020, 45, 493–508. (In Chinese) [Google Scholar]
- Naruse, H.; Uehara, H.; Deguchi, T.; Fujihashi, K.; Onishi, M.; Espinoza, R.; Guzman, C.; Pardo, C.; Ortega, C.; Pinto, M. Application of a distributed fibre optic strain sensing system to monitoring changes in the state of an underground mine. Meas. Sci. Technol. 2007, 18, 3202–3210. [Google Scholar] [CrossRef]
- Ricardo, M.; Javier, S.; Juan, F.B. Estimating tunnel wall displacements using a simple sensor based on a Brillouin optical time domain reflectometer apparatus. Int. J. Rock Mech. Min. Sci. 2015, 75, 233–243. [Google Scholar]
- Chai, J.; Yuan, Q.; Li, Y.; Zhang, D.; Liu, Q. Experimental study on overlying strata deformation based on distributed optical fiber sensing. Chin. J. Rock Mech. Eng. 2016, 35, 3589–3596. (In Chinese) [Google Scholar]
- Lanciano, C.; Salvini, R. Monitoring of strain and temperature in an open pit using Brillouin distributed optical fiber sensors. Sensors. 2020, 20, 1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, J.; Yuan, Q.; Li, Y.; Wang, S.; Sun, Y.Y. Application analysis on method of physical model test with optical fiber sensing technology. J. Eng. Geol. 2015, 23, 1100–1108. (In Chinese) [Google Scholar]
- Gong, H.; Kizil, M.S.; Chen, Z.; Amanzadeh, M.; Yang, B.; Aminossadati, S.M. Advances in fibre optic based geotechnical monitoring systems for underground excavations. Int. J. Min. Sci. Technol. 2019, 29, 229–238. [Google Scholar] [CrossRef]
- Zhao, Z.G.; Zhang, Y.J.; Li, C.; Wan, Z.; Li, Y.N.; Wang, K.; Xu, J.F. Monitoring of coal mine roadway roof separation based on fiber Bragg grating displacement sensors. Int. J. Rock Mech. Min. Sci. 2015, 74, 128–132. [Google Scholar] [CrossRef]
- Yi, Z.; Nong, Z.; Guang, S. A fiber Bragg grating-based monitoring system for roof safety control in underground coal mining. Sensors 2016, 16, 1–13. [Google Scholar]
- Nan, S.; Gao, Q. Application of distributed optical fiber sensor technology based on BOTDR in similar model test of backfill mining. Procedia Earth Planet. Sci. 2011, 2, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Piao, C.; Yuan, J.; Wang, D.L.; Li, P.T. A study on distribution measurement and mechanism of deformation due to water loss of overburden layer in vertical shaft. J. Sens. 2015, 28, 1–7. [Google Scholar] [CrossRef]
- Piao, C.; Lei, S.; Yang, J.; Sang, L. Experimental study on the movement and evolution of overburden strata under reamer-pillar coal mining based on distributed optical fiber monitoring. Energies 2018, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhang, P.S.; Shi, B.; Wang, H.X.; Li, C.S. Monitoring and analysis of overburden deformation and failure using distributed fiber optic sensing. Chin. J. Geotech. Eng. 2015, 37, 952–957. (In Chinese) [Google Scholar]
- Liu, S.L.; Zhang, D.; Zhang, P.S.; Wang, J.C.; Shi, B. Deformation monitoring of overburden based on distributed optical fiber sensing. J. Eng. Geol. 2016, 24, 1118–1125. (In Chinese) [Google Scholar]
- Bin, S.; Song, Z.P.; Rong, W.; Liquan, G. Dynamic detection and analysis of overburden deformation and failure in a mining face using distributed optical fiber sensing. J. Geophys. Eng. 2018, 15, 2545–2555. [Google Scholar]
- Zhang, P.; Zhang, D.; Song, B.; Bin, S.; Xu, S.A. Optical fiber monitoring technology for evolution characteristic of rock stratum deformation and failure in space of mining field. J. Eng. Geol. 2019, 27, 260–266. (In Chinese) [Google Scholar]
- Hu, T.; Hou, G.Y.; Li, Z. The field monitoring experiment of the roof strata movement in coal mining based on DOFS. Sensors 2020, 20, 1–31. [Google Scholar]
- Chai, J.; Du, W.; Yuan, Q.; Zhang, D. Analysis of test method for physical model test of mining based on optical fiber sensing technology detection. Opt. Fiber Technol. 2019, 48, 84–94. [Google Scholar] [CrossRef]
- Chai, J.; Ma, Z.; Zhang, D.; Yuan, Q.; Lei, W. Experimental study on PPP-BOTDA distributed measurement and analysis of mining overburden key movement characteristics. Opt. Fiber Technol. 2020, 56, 1–10. [Google Scholar] [CrossRef]
- Liu, Q.S.; Wang, J.T.; Xiao, L.G.; Li, J.C.; Liu, B.; Zhang, X.L. Application of OFDR-based sensing technology in geo-mechanical model test on tunnel excavation using cross rock pillar method. Chin. J. Rock Mech. Eng. 2017, 36, 1063–1075. (In Chinese) [Google Scholar] [CrossRef]
- Liu, J.; Song, Z.; Lu, Y.; Bai, Y.; Qian, W.; Kanungo, P.; Chen, Z.; Wang, Y. Monitoring of vertical deformation response to water draining–recharging conditions using BOFDA-based distributed optical fiber sensors. Environ. Earth Sci. 2019, 78, 1–11. [Google Scholar] [CrossRef]
- Chai, J.; Yuan, Q.; Wang, S.; Li, Y.; Zhang, L. Detection and representation of mining-induced three horizontal zones based on fiber Bragg grating sensing technology. J. China Univ. Mining Technol. 2015, 44, 971–976. (In Chinese) [Google Scholar]
- Liu, Y.; Li, W.; He, J.; Liu, S.; Cai, L.; Cheng, G. Application of Brillouin optical time domain reflectometry to dynamic monitoring of overburden deformation and failure caused by underground mining. Int. J. Rock Mech. Min. Sci. 2018, 106, 133–143. [Google Scholar] [CrossRef]
- Yuan, Q.; Chai, J.; Zhang, D.; Liu, J.; Yin, G. Monitoring and characterization of mining-induced overburden deformation in physical modeling with distributed optical fiber sensing technology. J. Light. Technol. 2020, 38, 881–888. [Google Scholar] [CrossRef]
- Hou, G.Y.; Hu, T.; Li, Z.; Xie, B.; Xiao, H.; Zhou, T. Experimental study on overburden deformation evolution under mining effect based on distributed optical fiber technology. Rock Soil Mech. 2020, 41, 1–11. (In Chinese) [Google Scholar]
- Tsuneo, H.; Mitsuhiro, T. BOTDA-nondestructive measurement of single mode optical fiber attenuation characteristics using Brillouin interaction: Theory. J. Light. Technol. 1989, 7, 1170–1176. [Google Scholar]
- Liu, Y.; Liu, Q.M.; Li, W.P.; Li, T.; He, J.H. Height of water-conducting fractured zone in coal mining in the soil–rock composite structure overburdens. Environ. Earth Sci. 2019, 78, 1–13. [Google Scholar] [CrossRef]
- Zhu, P.Y.; Jiang, G.L.; Leng, Y.B. Analysis of seepage monitoring for an earth dam model with distributed optical fiber sensors. Engineering 2011, 3, 82–85. (In Chinese) [Google Scholar]
- Zhang, C.C.; Shi, B.; Zhu, H.H.; Wang, B.J.; Wei, G.Q. Toward Distributed Fiber-Optic Sensing of Subsurface Deformation: A Theoretical Quantification of Ground-Borehole-Cable Interaction. J. Geophys. Res. Solid Earth 2020, 125, 1–15. [Google Scholar] [CrossRef]
Lithology of Simulated Stratum | Simulated Thickness (cm) | Accumulated Height (cm) | Dosage of Analogous Materials (Kg) | Material Ratio | ||
---|---|---|---|---|---|---|
Sand | Gypsum | Mica Powder | ||||
Mudstone | 23 | 128 | 198.72 | 6.62 | 15.46 | 937 |
Kern stone | 11 | 105 | 73.92 | 12.67 | 19.00 | 746 |
Conglomerate | 8 | 94 | 53.76 | 6.91 | 16.13 | 737 |
Mudstone | 17 | 86 | 146.88 | 3.27 | 13.05 | 928 |
Siltstone | 37 | 69 | 284.16 | 21.31 | 49.73 | 837 |
Fine sandstone | 8 | 32 | 53.76 | 4.61 | 18.43 | 728 |
Siltstone | 6 | 24 | 46.08 | 3.46 | 8.06 | 837 |
Kern stone | 8 | 18 | 30.72 | 5.27 | 7.90 | 746 |
Coal | 5 | 10 | ||||
Mudstone | 5 | 5 | 43.20 | 0.96 | 3.84 | 928 |
Lithology | Density (Kg/m3) | Elastic Modulus (KPa) | Poisson Ratio | Bulk Modulus (KPa) | Shear Modulus (KPa) | Cohesion (KPa) | Friction Angle (°) |
---|---|---|---|---|---|---|---|
Conglomerate | 170.23 | 20.3 | 0.32 | 18.81 | 7.69 | 25.08 | 35.00 |
Mudstone | 200.82 | 48.61 | 0.36 | 58.28 | 17.86 | 39.07 | 40.20 |
Sandstone | 170.23 | 30.16 | 0.32 | 27.17 | 11.47 | 29.00 | 38.50 |
Siltstone | 173.29 | 41.09 | 0.38 | 55.68 | 14.92 | 34.57 | 37.60 |
Coal | 96.84 | 4.47 | 0.31 | 3.94 | 1.70 | 28.10 | 23.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Q.; Chai, J.; Ren, Y.; Liu, Y. The Characterization Pattern of Overburden Deformation with Distributed Optical Fiber Sensing: An Analogue Model Test and Extensional Analysis. Sensors 2020, 20, 7215. https://doi.org/10.3390/s20247215
Yuan Q, Chai J, Ren Y, Liu Y. The Characterization Pattern of Overburden Deformation with Distributed Optical Fiber Sensing: An Analogue Model Test and Extensional Analysis. Sensors. 2020; 20(24):7215. https://doi.org/10.3390/s20247215
Chicago/Turabian StyleYuan, Qiang, Jing Chai, Yiwei Ren, and Yongliang Liu. 2020. "The Characterization Pattern of Overburden Deformation with Distributed Optical Fiber Sensing: An Analogue Model Test and Extensional Analysis" Sensors 20, no. 24: 7215. https://doi.org/10.3390/s20247215